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Abstract

The Air Force Institute of Technology (AFIT) has been involved in developing Kalman
filter trackers for airborne targets for the last 14 years. The goal of this particular thesis was to
track a ballistic missile in the boost phase at ranges up to 2000 km, in order to control a high
energy laser weapon designed to destroy the target. The filter developed combined an existing
"FLIR" filter, which estimated location of the plume intcnsity centroid based on measurements
from a forward looking infrared sensor (FLIR), and an existing "center-of-mass" filter, which
estimated the offset between the plume and missile center-of-mass based on measurements from
low-energy laser reflections. In addition, the new filter modeled the oscillation of the rocket
plume with respect to the missile kardbody, known as the "pogo" affect, in the hopes of improving
overall tracking performance. Filter performance is analyzed through use of Monte Carlo
simuiation software developed at AFIT.

This thesis also performed observability tests on various filter configurations in order to
gain insight into observability problems identified during earlier research. Observability of states
is measured through the use of both stochastic observability testing and Monte Carlo analysis of
the filter models using the Multimode Simulation for Optimal Filter Evaluation (MSOFE)

software.

xvii




KALMAN FILTER TRACKING OF A BALLISTIC MISSILE USING
FORWARD-LOOKING INFRARED AND DOPPLER RETURN

MEASUREMENTS

1. Introduction

The radical changes in the geopolitical complexion of the world have triggered
corresponding drastic adjustments to the defensive posture of the Unites States military complex.
Despite major cutbacks, the US Government continues its commitment to develop a national
ballistic missile defense system under the Strategic Defense Initiative (SDI). One of those
technologically challenging programs within SDI is the research to design a space-based
contingent that can destroy ballistic missiles immediarely after launch while they are still in the

boost phase.

There are numerous technologies that must be employe:i to solve the problem of acquiring,
tracking, and pointing a high energy laser (HEL) weapon at a ballistic missile. The major
technologies exploited in the solution to this problem are the Kalman filter, the laser, and the
forward looking infrared sensor (FLIR). Although all three technologies matured independently,

they must be combined in a single system to solve this problem.

One of the SDI systems currently in development at the Phillips T_atoratory, Kirtland Air
Force Base, New Mexico, is a space-based system that contains a defensive weapon, the HET ., and

all associated sensors and hardware necessary for tracking and pointing the HEL. The main
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Figure 1.1 Ballistic Missile Tracking Scenario
objective, shown pictorially in Figure 1.1, is to acquire a launched missile, track the missile
precisely, and point and fire the laser. Figure 1.1 depicts a simplified relationship between the
FLIR and the target. The FLIR plane shown is associated with tracker, The tracker centers the
line-of-sight (LOS) vector of the FLIR plane on the target. It is eventually desired te point the
LOS vector directly at the missile hardbody, since this is a shared optics device such that the laser
will fire along that LOS. Since tracking and firing must take place rapidly, at extremely long
distances, and through the atmosphere, this objective is quite challenging to achieve. A number
of major difficulties that must be overcome in this tracking problem are considered and
implemented in this thesis research. Atmospheric disturbances cause the image of the rocket

plume image to jitter on the FLIR plane. The atmosphere will also attenuate and jitter both the
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low energy laser (LEL) sensor (to be discussed subsequently) and the HEL, but to different
extents. Bending of the space platform itself will also cause errors in pointing accuracy. The
original tracker incorporated measurements from only the FLIR; however, it obtains information
only on the high intensity infrared image of the plume. It is essential to locate the missile
hardbody versus its plume centroid for firing :he HEL.. A phenomenon known as pogo causes the
plume to oscillate with respect to the missile and makes estimation of the missile center-of-mass
location difficult (if not impossible) based on FLIR data alone. For this reason, measurements
from the LEL were incorporated to gain direct measurement information on the hardbody. Once
FLIR measurements allow estimated motion of the plume center-of-intensity position and target
velocity, the LEL is swept along the estimated velocity vector (as seen in the FLIR image plane),
starting from the estimated center-of-intensity, in anticipation of intercepting the missile hardbody.
Using reflected information from the LEL, the locations of the plume/hardbody interface and the
hardbody-nose/space-background interface would yield an estimate of the hardbody center-of-mass
location. It was determined that use of speckle reflectance information from the LEL did not
allow clear distinction of the hardbody/plume interface and therefore resulted in biased
calculations of the hardbody center-of-mass. To alleviate this difficulty, a method to utilize the

doppler shift frequencies in the return was implemented to define the interface clearly.

These anomalies must be considered in design of a tracker and compensated, for such that
the HEL beam can be meintained on a spot on the missile at a 2000 Km range during the firing
sequence. To complicate matters further, the laser is not capable of destroying the missile
instantaneously (like a kinetic kill weapon) but must be maintained within a small arca on the

target over a relatively long period of time [4]. This research specifically addresses the difficulties
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with optimally combining measurements from the FLIR and LEL in order to locate che missile

center-of-mass in the presence of plume pogo.

1.1 Background

The Phillips Laboratory (formerly the Air Force Weapons larratory or AFWL), at
Kirtland Air Force Base, New Mexico, has been sponsoring research for the past 14 years at the
Air Force Institute of Technology (AFIT) in the use of directed energy weapcns to destroy
airborne targets [41]. This section provides a general overview of the sensor/tracker system in

development by this research.

The primary sensor being used to track the targets is a 300 x 500 picture element (pixel)
array FLIR sensor, The FLIR is a passive sensor which detects the infrared radiation emiited by
the missile plume. Each pixel in the array discerns infrared energy through an angle of 15
microradians in two orthogonal directions (azimuth and elevation) [40]. A smaller 8 x 8 pixel
array is utilized as the tracking window, which will be referred to as the field of view (FOV) in
this thesis [14,40]. The tracker has been found to be accurate enough to maintain the target within
the smaller FOV, and the smaller number of pixels allows for less computational loading and time

lag than required for a larger number of pixels.

Excitations from detectors in the 8 x 8 FOV are fed to an enhanced image correlation
algorithm (presented later in Figure 1.4). This algorithm compares the current raw FLIR data
frame with a template which estimates the plume’s intensity function [41]. The correlation then
determines the optimal offsets in two orthogonal directions (defining the FLIR plane) that yield

maximum correlation with the template. These offsets are the "pseudo-measurements” for a linear

14




Kalman filter, The linear Kalman filter updates position estimates of the plume centroid location
based on the pseudo-mmeasurements and propagates an estimate of the offset (from the current
center of the FOV) of the centroid at the next update frame. A controller applies the appropriate
adjustments to the FLIR plane in order to kecp rhe centroid in the center of the FOV, i.e., to point

the LOS vector of Figure 1.1 at the predicted location of the target one sample period later.

The previous three theses [8,9,14] incorporated use of a second sensor, a low energy laser,
to obtain measurements of the location of the hardbody itself. The LEL is swept along the
estimated target velocity vector in the FLIR image plane, relative to the centroid estimate, in order
to obtain the center-of-mass location. Prior research incorporated the LEL measurements into the
tracking algorithm using two different methods. Either a single linear Kalman filter (with
decoupled models for incorporating the two types of measurements) accepted measurements from
both the FLIR and the LEL, or two independent Kalman filters utilized the measurements
separately. In either case, two independent estimates of intensity centroid location and the offset
of the center-of-mass from that location were combined outside the filter to determine where to

point the HEL.

This research incorporates both types of measurements into a single Kalman filter that
optimally combines the measurements to estimate the location of the missile center-of-mass
directly. Unlike previous research, there will be 110 purposeful attempt to decouple the two types

of measurements, but to process them with a full accounting for physical interrelationships.
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1.2 Summary of Previous Research

The Air Force Institute of Technology has been engaged in supporting the Philiips
laboratory in the development of ballistic missile trackers since 1978 [31]. Sixteen theses and a
numbe: of other documents report the ongoing developments at AFIT. Each thesis contains a
synopsis of previous wotk. This section provides a general overview of the previous ballistic
missile tracker research completed at AFIT. The information included in this section is essentially
a replication of the version from Herrera’s thesis [14] with minor alterations and comments added

to include his own contributions.

Research in this area was initiated by Mercier [31] in 1978, who compared extended
Kalman filter (EKF) performance to that of the AFWL correlation tracker under identical
conditious. An eight-state truth model was developed for simulation purposes, consisting of two
target position states and six atmospheric jitter states. The position states defined the target
location in each of two FLIR plane coordinate directions (azimuth and elevation), by accurately
portraying target trajectories in three-dimensional space and projecting onto the FLIR plane. The
atmospheric jitter was modeled by a third order shaping filter driven by white noise for each FLIR
plane axis, as provided by The Analytic Sciences Corporation (TASC) [21]; three states defined
the atmospheric distortion in each of the two FLIR plane coordinate directions. The Kalman filter
dynamnics model consisted of four states: two states representing target position, and two
representing the atmospheric jitter (based on reduced order models, versus the six states of the
truth model). In both the truth model and filter dynamics model, the position states and
atmospheric jitter states were defined in each of the two FLIR plane coordinate directions. In the

filter, the position and jitter states were each modeled as a first-order, zero-mean, Gauss-Markov




process. The FLIR provided sampled data measurements to the filter at a 30 Hertz (Hz) rate. The
FLIR measurement noises corrupting each pixel output due to background clutter effects and
internal FLIR noises were modeled in the filter as both temporally and spatially uncorrelated. The
target was considered as a point source of light (i.e., a long range target) having benign dynamics.
The corresponding Airy disc on the FLIR image plane was modeled as a bivariate Gaussian
distribution with circular equal intensity contours. The conventional correlation tracker and the
extended Kalman filter were compared across three different signal-to-noise ratios (SNR), using
a ten-run Monte Carlo analysis to obtain the tracker error statistics. The results of the comparison
are shown in Table 1.1 for a Gaussian intensity function dispersion, o,, equal to one pixel. (For
a Gaussian intensity function dispersion equal to one pixel, most of the useful information is

contained in an area cf about five pixels square.)

While the correlation tracker showed dramatic performance degradation as the SNR was
decreased, the Kalman filter showed only a minor change in its performance at the lowest SNR
tested. The extended Kalman filter was shown to be superior to the correlation tracker by an
order of magnitude in the root mean square (rms) tracking error, provided the models incorporated
into the filter were a valid depiction of the tracking scenario. This success motivated a follow-on

thesis to improve filter modeling and thereby to enhance the performance.

The research accomplished by Harnly and Jenson [13,25] investigated modeling
improvements in the filter and tested more dynamic target simulations. A comparison was made
between a new six-state fi.ter and a new eight-state filter. The six-state filter uynamics target
model included the four previous states as well as two velocity states in the FLIR plane

coordinates (azimuth and elevation); the dynamics model of the eight-state filter included two




Table 1.1

Kalman Filter and Correlation Tracker Statistics Comparison

Fm
Signal-to

Correlation Tracker

Extended Kalman Filter

Noise Ratio
Mean Esror lo Mean Error lo
20 7.0 8.0 0.0 0.2
10 8.0 10.0 0.0 0.2
1 15.0 30.0 0.0 0.8

acceleration states in the FLIR coordinates as well. The acceleration was modeled as Brownian
motion (BM) (¢ = w, where w is a zero-mean white Gaussian noise). The filter was also designed
to perform residual monitoring, which allowed the filter to react adaptively, and maintain track,
by quickly increasing the values in the filter-computed state covariance matrix P, which in turn
increased the filter gain K. A recommendation was also made to examine increasing the FOV
during target jinking maneuvers to avoid losing lock. The constant-intensity contours of the target
were modeled as elliptical patterns as opposed to the earlier circular equal-intensity contours in
order to simulate closer range targets. The major axis of the target FLIR image was aligned with
the estimated velocity vector. A number of different target trajectories were tested against the six-
state and eight-state filters, and while the six-state filter performed well during moderate jinking

maneuvers, the eight-state filter performed better while tracking high-g target maneuvers.

Other approaches to modeling the dynamics of the target in the filter were considered by
Flynn [11]. He used a Brownian motion (BM) acceleration target dynamics model [13] and a
constant turn-rate (CTR) dynamics model. The CTR model portrayed the target behavior by

modeling the acceleration as that associated with CTR dynamics. Concatenating suca constant
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turn-rate segments together provides an accurate portrayal of manned target evasive maneuver
trajectories. Additionally, a Bayesian multiple model adaptive filter (MMAF) was developed
using the BM dynamics model. A MMAF (Figure 1.Z) consists of a bank of K independent
Kalman filters, each of which is tuned to a specified target dynamics characteristic or parameter
(a,; @y...a, in Figure 1.2). The time histories of the residuals (ry(¢) in Figure 1.2) of these K
Kalman filters are processed to compute the conditional probability (p,(#) in Figure 1.2) that each
discrete parameter value is "correct.”" The residuals of the Kalman filter, based upon the "correct”
model, are expected to be consistently smaller (relative to the filter’s internally computed residual
rms values) than the residuals of the other mismatched filters (i.e., based upon "incorrect” models)
[11]. If that is true, then the MMAPF algorithm appropriately weights that particular Kalman filter
more heavily than the other Kalman filters. These values are used as weighting coefficients to
produce a probability-weighted average of the elemental filter outputs {11]. Therefore, the state
estimate (8,,,,(?) in Figure 1.2) is actually the probabilistically weighted average of the state
estimates generated by each of the K separate Kalman filters (%,(¢,) in Figure 1.2). Testing of the
three filter models was conducted for three different flight trajectories which included 2-g, 10-g,
and 20-g pull-up maneuvers. Unfortunately, the residuals of the K Kalman filter did not differ
from each other enough to perform the weighting function properly, and MMAF did not track
well. The BM and CTR filters both performed equally well at 2-g’s. The CTR filter was found

to be substantially better than the BM filter for 10-g and 20-g pull-up maneuvers.

Mercie. had assumed that the filter had a priori knowledge of the target shape and
intensity profile. Singletery [42] improved the realism in the target model by developing a model
in the FLIR plane which included multiple hot spots. However, he returned to the case of very

benign targets. The filter did not assume a priori knowledge of the target size, shape, or location.
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Figure 1.2 Multiple Model Adaptive Filter

A new data processing scheme (Figure 1.3) was developed which included the use of the Fast
Fourier Transform (FFT) and the Inverse Fast Fourier Transform (IFFT), each of which can be
produced with a lens if optical processing is used. The plan included two data paths for
processing the intensity measurements z(¢). On the first path, the 8 x 8 array of intensity
measurements from the FLIR are arranged into a 64-dimensional measurement vector. This
measurement vector is applied to the extended Kalman filter (as in prior work). The purpose of
the second path is to provide centered target shape functions to be time-averaged with previous
centered shape functions in order to generate the estimated target template (A in Figure 1.3) and

partial derivatives of it with respect to the states (H in Figure 1.3), as needed by the extended
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Kalmen filter. This invokes the shifting theorem of Fourier transforms. The shift theorem states
that a translation of an image in the spatial domain results in a linear phase shift in the spatial
frequency domain. To negate the translational effects of an uncentered target image in the spatial
domain, the Fourier transform of the translated image is multiplied by the complex conjugate of
the desired linear phase shift (42]. The extended Kalman filter model, in path one, which was
developed by Mercier [31], was used to provide the optimal estimate of the required linear
translation. The filter state estimates are used to develop the complex conjugate of the linear

phase shift and provide the centered measurement functions. Before the IFFT is taken, the

x=3+x, @)
Y=y ) +y )
8x8 Pad E Negating Exponential ;
Input P wih [“PF[T® Phase [P Smoothing F
Array Zetoes | T Shift of Data T
hLx() 4]
R Y
Hix@t ) ¢t] Forward
Backward
Difference
—Y_____¥.___ Results of Measurement Update
2@ Kaiman Filter AT o
I A x=x,(t7,) To
T " Results of y=5 (t: ———%  Controller
Propagation a bl

Figure 1.3 Data Processing Scheme using FFT and IFFT
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resulting pattern is exponentially smoothed to yield an approximation to averaging the result with
previously centered frames of data, to minimize the effect of measurement noise. The result is
a centered paitern with noise effects substantially reduced. Following the application of the IFFT
to form the nonlinear function of intensity measurements (k of Figure 1.3), the spatial derivative
is used to determine the linearized function of intensity measurements (H of Figure 1,3). These
are both used by the Kalman filter in processing the next sampled measurement [42]. The results
of this data processing scheme were inconclusive due to filter divergence problems. Despite the
problems encountered with the filter, the concept was considered to have filter performance

potential.

Rogers [41] continued the work of developing a Kalman filter tracker which could handle
multiple-hotspots with no a priori information as to the size, shape. intensity, or location of the
target. Moreover, he continued the application to benign target motion, as Singletary [42] had
done before, in order to concentrate on the feasibility of adaptively identifying the target shape.
Using digital signal processing on the FLIR data (as described above) to identify the target shape,
the filter uses the information to estimate target offset from the center of the FOV, which in turn
drives a controller to center the image in the FLIR plane. Algorithm improvements included
replacing the Forward-Backward Difference block of Figure 1.3 with a partial differentiation

operation accomplished as a simple multiplication before the IFFT block.

Rogers also considered an alternative design that used the target image A (as generated
in Figure 1.3) as a template for an enhanced correlator, as shown in Figure 1.4. The position
offsets produced as outputs from the correlator were then used as "pseudo-measurement” inputs

to a linear Kalman filter. The improved correlation algorithm of Figure 1.4 compares the FLIR
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image to an estimated template instead of the previous image, as is done in the standard correlator.
This tracking concept is thus a hybrid of correlation tracking and Kalman filtering [41]. [ts
performance was compared to the results of earlier extended Kalman 1ilters that used the raw
FLIR data as measurements [13). Although the extended Kalman filter performed well without
a priori knowleidge of the shape and location of the intensity centroid, the improved correlator
usel with the linear Kalman filter outperformed the extended Kalman filter while providing

reducsd computational loading.
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Figure 1.4 Linear Kalman Filter/Enhanced Correlator Algorithm
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Millner [33] and Kozemchak [16] tested an extended Kalman filter and the linear Kaiman
filter/enhanced correlation algorithm against close range, highly maneuverable targets. The linear
four-state filter u.ed in the previous research was replaced by an eight-state filter consisting of
position, velocity, acceleration, and atmospheric jitter states in the two coordinates of the FLIR
plane (azimuth and elevation). Two target dynamics models were also developed. The target was
first modeled as a first-order Gauss-Markov acceleration process, and secondly with a constant
turn-rate model. Both filters performed well without a priori knowledge of the target size, shape,
and location, using the FFT data processing method for identifying the target shape function
[41,42]). However, at target maneuvers approaching 5-g's, the filter performance degraded
considerably. It was noted that the tracking was substantially better when the Kalman filtes

dynamics model closely matched the target trajectory.

The Bayesian MMAF technique [11] was reinvestigated by Suizu [45] based on the
recommendations of the previous work. The MMAF (Figure 1.2) consisted of two elemental
Kalman filters. One clemental filter was tuned for benign target maneuvers and obtained sampled
measurement information from an 8 x 8 pixel FOV in the FLIR plane. A second filter was tuned
for dynamic maneuvets and obtained sampled measurement informaiion from a 24 x 24 pixel FOV
in the FLIR plane. The technique allowed the MMAF to maintain track on benign target
trajectories up to 20-g’s at a distance of 20 kilometers. The MMAF was configured for both the
linear Kalman filter/fenhanced correlation algorithm [41] and the extended Kalman filter. Both
filtering schemes exhibited comparable rms tracking performance results, with the correlator/linea:
Kalman filter having smaller mean errors and larger standard deviations than the exiended Kalman
filter, as seen in earlier work of Rogers [41]. The state rms tracking error was on the order of 0.2

to 0.4 pixels (one pixel being equivalent to 20 prad on a side).
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'The potential of the MMAF technique with the FFT processing method was continued by
Loving [19]. A third filter was added to the bank of filters, tuned for intermediate target
maneuvers and obtaining sampled measurement information from the § x 8 FOV in the FLIR
plane. This MMAF showed significant performance advantages over all the previous filters.
Additionally, a Maximum A Posterori (MAP) algorithm was developed and compared with the
Bayesian MMAF. The MAP algorithm differs from the Bayesian MMAF of Figure 1.2 in that
the MAP algorithin uses the residuals of the separate filters to select the one filter with the highest
probabilistic validity, while the Bayesian MMAF uses a probability-weighted average of all filters
in the bank. The Bayesian and the MAP techniques produced similar results and delivered

performance that surpassed previous filters.

Netzer [37] expanded the study of the MMAF algorithm. He investigated a steady-staie
bias error that resulted when tracking a target exhibiting a high-g constant turn-rate maneuver.
A major cause of this bias is the MMAF mistuning the x-direction (azimuth) while maintaining
lock on the highly dynamic y-direction (elevation) transient for a trajectory starting horizontally
and then puliling up with a high-g maneuver. This motivates the concept of individual x- and y-
channel target-motion models (and tuning parameters) in the elemental filters in the MMAF, which
would allow adaptive filtering for maneuvers in the x- and y-channels independently [37]. The
size of the FOV was also investigated. When a target came to within five kilometers of the FLIR
platform, the 8 x 8 FOV was saturated with the intensity centroid image, resulting in a loss of
track. This analysis motivates a changing FOV to maintain lock for targets and also warrants the
possibility of adding another Kalman filter which is tuned for extremely harsh maneuvers at close
ranges. A study of the aspect ratio (AR) associated with target’s intensity centroid was also

accomplished to identify filter tracking characteristics for various target image functions [37].
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This study used "greyscale plots” to support the a..alysis. A greyscale plot is a pictorial display
of an image in which shading of the image is used to indicate similar parameters. In this case,
the plot indicates regions of varying levels of the intensity of the filter-recunstructed target image
in a 24 x 24 pixel FOV. Four different AR values of 0.2, 0.5, S, and 10 were compared to the
nominal AR of 1. The results showed that tracking was slightly impaired for images with AR as
high as 5. The reduced performance is primarily along the semi-major axis of an elliptically
modeled intensity centroid. Additionally, a target-decoy experiment was conducted in which a
high density decoy was also located in the FOV with the target. Since the decoy was modeled
with different dynamics not given to the filter, it was hoped that the filter would reject the decoy.
This was not the case; the filter locked onto the hotter decoy image. This indicates that the
inability of the current filter algorithm to reject this type of bright hotspot requires isolating the

target image in a small FOV or some other concept to ensure tracking of the desired target.

The previous research efforts [19,37,45] used Gauss-Markov acceleration models in the
development of the MMAF. Tobin [47] implemented the CTR dynamics model in another
MMAF. His results showed that the Gauss-Markov MMAF exhibited smaller bias errors while
the CTR MMAF gave smaller steady state standard deviation errors; both filters had comparable
rms errors. Motivated by earlier research [37], he also developed an 8 x 24 pixel FOV for both
the x- and y-directions of the FLIR image plane to be used with filters designed to anticipate harsh
target accelerations in a specific direction (along which the longer side of the FOV would be
oriented). The results showed that the filter maintained lock on a target during a highly dynamic
maneuver in the y-direction while maintaining substantially better steady state bias performance

in the benign x-direction.
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Leeney [17] expanded the previously used Gauss-Markov truth model by incorporating
bending vibrational states. The elemental filters in the MMAF were not modeled with this
information through explicit state variables, but performed well up to a 10-g maneuver. A
performance investigation was also conducted as to the effects of increasing the measursment
update rate from the previously used 30 Hz to 50 Hz. The sampling rate of 50 Hz showed a
minor performance improvement, but also increased the computational loading because of the
higher rate. A preliminary study was also done on replacing the 8 x 24 pixel FOV in the x- and
y-directions {47] on the FLIR plane with a single 8 x 24 pixel FOV, which is also known as the
rotating rectangular-field-of-view (RRFQV). The idea was to align the long side of the rectangular
FOV with an estimate of the acceleration vector. The higher precision velocity estimate was
actually used instead of the noisier acceleration estimate, and it was assumed that the acceleration
direction would be essentially orthogonal to the cuirent velocity vector direction. Additionally,
the five elemental Kalman filtgrs in the MMAF bank would be reduced to four by using this FOV
rotation scheme. The results were nct conclusive, but the insight provided motivation to continue

the study.

The RRFOV research was continued by Norton [38]. He discoveied ihat the appropriate
choice of the filter dynamics driving noise strength Q dictated the filter’s response to a high-g
jinking maneuver, and that the size of the FOV could be ieduced to an 8 x 8 pixel rotating FOV,
also known as the rotating square field of view (RSFOV), His investigation showed that a non-
rotating square FOV could provide good performance, but that the dynamics noise strength @
matrix value must be large in the elements corresponding to the direction of the acceleration
vector. A mathematical matrix transformation was deeloped which “"rotated” the Q matrix to

keep the larger values aligned with the acceleration vector. A study of both the rotating FOV and
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rotating the Q matrix provided advantages and disadvantages for each method. Both methods are
affected by the tuning parameters used to represent the rms level of acceleration of the target,
which also contributes to error biases. The rotating FOV improves the x-direction (azimuth)
estimation for dominant y-direction (elevation) dynamics from previous MMAF algorithms (on
pull-up maneuvers), hut does not improve y-direction estimation for dominant y-direction
dynamics. Rotating the Q matrix adaptively improves estimation of both x- and y-directions and
improves the jink maneuver error transients, but is dependent on the orthogonality of the velocity
and acceleration vectors and proper initial tuning parameters. The conclusion was that both
methods employed together provide the ability to adjust filter characteristics to differentiate
between harsh and benign dynamics in any orientation of target acceleration (rotating Q) while
at the same time maintaining appropriate view resolution in the directions of both benign and
harsh dynamics (rotating FOV). Therefore, the combination allows for tracking highly

maneuvering targets without sacrificing the resolution provided by the smaller RSFOV [38].

The research up to this point was primarily directed towards tracking aircraft and missiles
from a ground-based FLIR plane. Rizzo [40] initiated research on a space-based platform which
could track targets using the same filtering techniques. Since the lincar Kalman filter/enhanced
correlator algorithm had proven to be computationally more eff.cient than the extended Kalman
filter, it was chosen as the system filter. The plume "pogo" (oscillation) phenomenon of a missile
in the boost phase of flight was modeled in the truth model and in one of two filters used for the
analysis. The pogo was modeled as a second-order Gauss-Markov process, and applied in the
direction of the missile velocity vector. The plan was to go adaptive on the pogo states using the

MMAF algorithm, treating the pogo amplitude and oscillation frequency as uncertain paraineters.
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Although the elemental filters were developed, no MMAF performance was accomplished, due

to elemental filter performance difficulties.

Three rotation schemes were also developed and tested. The first scheme, referred to as
the rotating field-of-view (RFOV), involved using the 8 x 8 FOV filter and aligning a single axis
of the FLIR plane with the estimated velocity vector of the target; therefore one of the coordinate
axes of the FOV would stay aligned with the oscillation of the plume. The second scheme,
referred to as the diagonal rotating field-of-view (DRFOV), used the 8 x 8 FOV with the diagonal
aligned with the oscillation of the plume. The motivation behind this scheme is that the 8 x 8
FOV is oriented in such a fashion will be able to "see” more of the target's intensity image, thus
enabling the sensor to obtain more measurement information [40). The third tracking scheme was
the rotating rectangular field-of-view (RRFOV) algorithm developed from previous research
{17,47). The RFOV, DRFOV, and the RRFOV algorithms [37] were tested along with the non-
rotating field-of-view (NRFOV) filter. The NRFOV is the standard tracker used in previous
studies [17,37,47]. The DRFOV scheme was shown to be superior to the other three tested for
providing enhanced tracking of a miissile hardbody whose plume is undergoing a pogo

phenomenon.

The eight-state filter (without pogo states; two target position states, two target velocity
states, two target acceleration states, and iwo atmospheric jitter states) and the ten-state filter (with
pogo states) surfaced a problem that may have gone unnoticed in previous work. Following
tuning of the filters with the twelve-statc truth model, it was discovered that the eight-state filter
outperformed the ten-state filter. An investigation into the cause of the irregularity revealed that

there was a serious observability problem in the both filters. The affected states were velocity and
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acceleration. A recommendation was made to remove the acceleration states in the ten-state filter,
and to model the velocity states in this new eight-state filter as a first-order Gauss-Markov

process.

Eden [8] resumed the research of the space-based FLIR platform. The scope of the
tracking problem was expanded by requiring the filter to track the hardbody of the missile rather
than just the intensity centroid of the FLIR. Since the FLIR could not supply the needed
information about the hardbody location relative to the image center-of-intensity to the Kalman
filter, another measurement source was developed. Under the advisement of the Phillips
Laboratory, the new measurement source was identified as a low-energy laser. The laser actively
acquires measurement data while the FLIR obtains its measurement information passively. This
scheme calls for a six-state Kalman filter (consisting of two position states, two velocity states,
and two atmospheric jitter states) to provide both a position vector and a velocity vector estimate
for the target plume. The low-energy laser is scanned along this estimated velocity vector from
the target plume image intensity center to intercept the hardbody. The hardbody is modeled as
a rectangle with binary reflectivity. When the low-energy Jaser (modeled with a beam width of
2,75 meters at the target) illuminates the hardbody, the reflection is received by a low-energy laser
sensor on the platform. This speckle information is provided to a single-state Kalman filter which
estimates the distance between the center-of-mass and the center-of-intensity along the velocity
vector direction. The center-of-mass is defined as the midpoint of the scan across the hardbody
if the centerline of the laser beam crosses the aft end of the missile and the top (nose) of the
hardbody, or if the laser beam crosses the aft end and one of the sides of the hardbody. The
results of the laser scan show that the interception of the laser with the hardbody occurred only

10-20% of the time. This low ratio of hitting the target was attributed to the six-state filter being
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tuned for estimating only the intensity centroid location on the FLIR plane and not for precise
velocity estimation. Since the velocity vector must be accurately estimated for active illumination

of the target to be a viable concept, it was recommended that the filter also be tuned for accurate

velocity estimates.

Tracking the center-of-mass of a missile hardbody using FLIR measurements and low-
energy laser illumination was further investigated by Evans [9]). He surmised that the tracking
error, represented by a straight line between the estimated iarget center-of-mass and the true
center-of-mass [8], could provide more insight if it were separated into the x- and y- (azimuth and
elevation) components, or into along-track and across-track (2-d perpendicular axes of the
hardbody) components. Evans proposed the latter method would provide better information
relative to the principle axes directions of the error phenomenon. An eight-state filter was
developed by augmenting Eden’s six-state filter [8] with two additional bias states used to estimate
the hardbody center-of-mass [9]. A comparison between the eight-state filter and Eden’s one-state
filter used in conjunction with the six-state FLIR filter, resulted in negligible difference in
performance. Evans’ analysis of the eight-state filter’s error statistics showed that the tracking
error is much greater in the along-track direction than in the across-track direction, and thus the
separate one-state filter and six-state FLIR filter performed as well as the all inclusive eight-state

filter.

Aside from investigating the tracking error statistics, Evans enhanced Eden’s 2-d hardbody
model (which treated reflectivity as a binary on/off function) with a 3-d hardbody reflectivity
model to provide increased realism in the simulation. Two reflectivity functions, cross-sectional

and longitudinal, were defined based upon empirical data obtained from a radar return off u 20
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x 249 inch cylinder with hemispherical endcaps, rotated longitudinally in the plane of the radar
source [10]. As shown in Figure 1.5, the cross-sectional and longitudinal reflectivity functions
were incorporated into Eden’s rectangular hardbody model as 29 discrete weighted line segments

along the longitudinal axis of the hardbody.

Evans also found that the sensitivity level of the low-energy sensor is a factoi in
determining the reflectivity received at the sensor [9]. The sensitivity level represents a threshold
below which the reflected return is indistinguishable from sensor noise. A sensitivity factor, y,
is incorporated in the simulation to define the appropriate sensitivity level required to detect a

hardbody’s return as well as represent the physical limitations of the sensor.
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Figure 1.5 Discrete Implementation of Cross-Sectional Reflectivity Function
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Performance data collection from the eight-state filter and one-state/six-state filter
combination hinged upon the successful illumination of the hardbody by the low-cnergy laser.
Evans was faced with a low tsrget intercept rate (10% - 20%), which inhibited any useful error
analysis of the center-of-mass filters. Realizing this, Evans generated an ad hoc technique of
offsetting the low-energy laser scan relative to the FLIR estimated velocity vector and "sweeping"
the scan across the hardbody, thus providing constant hardbody illumination information.
However, the "sweep" is not an optimal tool and should only be used to test the center-of-mass
filters in the simulation [9]. Both the 3-d reflectivity hardbody model and laser sweep were
employed to evaluate the performance of the eight-state filter and one-state/six-state filter

combination center-of-mass estimators.

Herrera continued to investigate the use of laser returns to determine the offset between
the hardbody and the plume intensity centroid, however, he used the information contained in the
Doppler spectra of the returns as opposed to the speckle reflectance magnitude [14]. Experiments
had shown that the laser speckle return of a solid-propellant rocket motor is of the same
magnitude as that of the hardbody as a result of the metallic particles present in the propellant
[2]. The returns from the plume can cause a non-negligible bias in the intensity centroid to
center-of-mass offset estimate of 25 to 30 meters, up to 90% of the times a laser scan is
successful. This tendency was not incorporated into the simulations completed by Eden and Evans
[8,9]. Herrera first showed that, as suspected, a bias, dependant on plume speckle return, existed

in the offset estimates using the one-state/six-state filter combination utilized by Eden and Evans.

Herrera proposed that the two types of information in the Doppler frequency spectra,

magnitude of frequency shift and spread of the return spectrum, could be used to obtain a finer
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discernment of the plume/hardbody interface. This proposal was based on the fact that the
spectral content of the hardbody and piume returns exhibit very different Doppler characteristics
that should be readily distinguishablc. His approach to using this information was not to simulate
the Doppler phenomenon itself, but to simulate the quality of the returns provided as
measurements to a single-state linear Kalman filter that estimates the offset. Herrera simulated
the quality of the low energy laser return as a function of laser wavelength and signal-to-noise
ratio, and simulated a specified probability of no Doppler information at a given sample time due
to ‘her the plume and hardbody spectra being indistinguishable or the low-power laser beam

missing the target body [14].

To prove the utility of using Doppler spectra, Herrera developed a one-siate Doppler filter
to replace the one-state offset estimator used by Eden and Evans [8,9]. He maintained the same
independent filter structure as used before, which utilized a six-state filter (four target dynamics
and two atmospheric jitter states) in conjunction with the offset filter. He also developed a two-
state Modified MAP MMAPF that incorporated both the speckle return and the Doppler return
measurements. Both configurations successfully showed that the Doppler return information
allowed more accurate determination of the hardbody/plume interface. The one-state filter based
only on Doppler measurement data delivered unbiased estimates of the offset, and in the case of
the two-state adaptive filter based on both Doppler and speckle information, use of Doppler
spectra permitted accurate calculation of the bias in the offset measurement from the speckle

return [14].
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1.3 Thesis Objectives

Although the past three theses have concluded that LEL measurements can be successfully

used in the tracker, they bave been based on a simplified target dynamics model without

acceleration or pogo states in the simulation of the real world environment. It is very difficult to
estimate the position of the hardbody itself using FLIR measurements alone because the FLIR
only detects IR radiation from the plume. Two major problems must be addressed while
designing an accurate tracking filter. The first is determining the observability problems in the

filter, and the second is find'» éh. location of the hardbody itself.

Negative Plume Plume Centroid and Positive Plume
Pogo Equilibrium Point Pogo
Co-Located

®  Target Center of Mass
O  Pogo Equilibrium Point
@  Intensity Centroid

Figure 1.6 Pogo Phenomenon
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Apparent motion of the plume centroid in the FLIR plane (as modeled in the filter) can
be caused by three major effects: motion of the target, the pogo effect, and jitter in the
measurements caused by the atmosphere. 'rhe current filter design does not have the capability

to observe the differences between the three effects fully . The next phase of research will finish

identifying the specific observability problems discovered by Rizzo [40], and particularly will

determine if there are observability problems associated with jitter and/or pogo. Next, a series of
studies must be completed to incorporate the pogo effect into the model. The pogo effect,
depicted in Figure 1.6, is the phenomenon in which the centroid of the plume oscillates along the

target velocity vector about an offset distance from the hardbody center-of-mass.

Once the observability problems are identified, design of a complete filter can be pursued.
A complete filter model will include all ta et dynamics states, the measurements from the FLIR,
and the measurements from the LEL. The measurements from the LEL will provide information
on the missile hardbody so that the filter may estimate hardbody location. Note that, due to the
observability difficulties identified by Rizzo [40], tiie last three theses have not included pogo in
either the truth or filter models. Therefore, the robustness of filters including LEL measurements
in the in the presence of the pogo effect has not been validated. In addition, the structure of the
filters including LEL measurements v 1s such that plume intensity centroid location and hardbody
offset were determined independently and the center-of-mass was calculated outside the filter
based on the estimates. This research will attempt to estimate the hardbody center-of-mass

directly using a single filter.

1.3.1 Observability Gramian Analysis. The first main objective in the this thesis will

resume the tests to determine what is causing the observability problems in the filter.




Observability gramians and eigenvalues for six different filter models will be investigated. It is
suspected that the observability gramian matrix eigenvalues associated with either the pogo states,
the jitter states, or both, are small relative to the other eigenvalues. If one set of eigenvalues is
small in comparison to the other, then oscillation of the plume intensity centroid relative to the
hardbody along the velocity vector would be dominated by a single effect and the filter would not
be able to distinguish between the jitter and pogo effects by using only measurements on the

rocket plume (in other words--only FLIR measurements).

The first stochastic observability tests will be performed on two linear Kalman filters
without pogo states. One filter will have 12 states including a full acmospheric jitter model of 6
states, 6 target dynamics states (position, velocity, and acceleration in the X and Y directions).
The other filter will be an eight-state filter that has an approximated atmospheric jitter model (only

two jitter states), and six target dynamics states.

Next, the same models but without the acceleration states will be studied. Comparison
of the observability tests on these 10-state ana 6-state filters with the previous 12 and 8-state
filters respectively, should provide insight into whether there is a fundamental problem with how
the full atmospheric jitter model and acceleration states are affecting each other. These first two
sets of tests should also indicate whether there is some interaction between the acceleration states

and jitter states that may be causing degradation of filter performance.

Observability will also be investigated for an alternate eight-state filter model that excludes
the acceleration states. This model will include four target dynamic states, the two pogo states
and the two-state jitter rodel. A velocity vector at a constant angle of 45 degrees will be

simulated to implement the  ogo states for these studies. These tests can be compared to results
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from the same model with the pogo states removed to find any difficulties stemming from
pogo/jitter blending. The study will be repeated for the same filter models outlined above but

with a general angle.

The outcomes of the stochastic observability tests will also be analyzed for observability
difficulties of jitter itself because previous research shows X(1,,,) errors are so much worse than
x(t') errors [8,9,14,40). The differences in error performance (varying from a factor of two to
over an order of magnitude) seem to be due to problems in estimating jitter. This research will
attempt to determine whether there is a fundamental problem with the jitter model itself that

causes such poor estimation of atmospheric disturbances over the filter piopagation cycle.

If the studies above confirm the suspicion that pogo and jitter states are difficult to
distinguish, then one may conclude that measurements from the FLIR of the plume intensity
centroid alone cannot provide the desired tracking performance of the missile hardbody due to
limited estimation accuracy. Inclusion of additional measurements, such as laser Doppler and/or
speckle, should increase filter performance for a number of reasons. Laser measurements provide
information on the missile hardbody itself as opposed to jus: the missile plume. Furthermore,
laser measurements should enhance observability of the pogo and jitter states. By "knowing"
where the hardbody is in relation to the plume, the filter will be able to distinguish the
fundamental difference between jitter and the pogo phenomenon. Atmospheric jitter will be
manifested as oscillations of both the hardbcdy and plume in certain frequency ranges. Pogo
should be differentiable as a relative oscillation betwezn the hardbody and plnme with a different
characteristic power spectral density (PSD). A more thorough descriptions of the truth and filter

models are contained in Chapters III and IV,
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1.3.2 Sensitivity Analysis of Single Filters. In order to verify the results of the
observability studies completed in the previous section, a series of 16 Monte Carlo performance
analyses will be performed using a software package called Multimode Simulation for Optimal

Filter Evaluation (MSOFE) [6]. Table 1.2 shows the combinations of truth versus filter models

Table 1.2 Monte Carlo Analysis Combinations
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to be investigated and the states each model contains. A subset of the filter models studied in the

previous section will be compared, via 10-run Monte Carlo analyses, against various truth models
that incorporate different combinations of states. The number of analyses has been reduced to
include only the combinations that should best provide insight into how the observability
difficulties are affecting filter performance. Monte Carlo analysis should indicate how estimatable

the individual states are for each combination of filter and truth model.

The first five runs shown in Table 1.2 investigate performance of filter models with
combinations of the approximated atmospheric jitter model and pogo states in comparison to a
truth model with no pogo phenomenon modeled. The second five runs analyze the same filter
models against a system model that includes the pogo states. These first two sets of Monte Carlo
analyses should help to identify the relative effects of the jitter and pogo states in the filter model
when presented with different real-world simulations. It is predicted the effects due to jitter are
dominant in the filter model and addition of the pogo states may actually degrade filter
performance due to potential observability difficulties. It is further suspected that filter
performance against a system without pogo modeled will be better than performance against a

system that incorporates the pogo phenomenology.

The last six sets of Monte Carlo analyses utilize two different truth models with target
dynamic acceleration states included. One truth model (10-state) incorporates jitter states and the
other (8-state) does not. The performance of four different filter models, with and without jitter
and/or pogo states, are analyzed against the two trath models. The last sets of Monte Carlo runs
will provide insight into what combinations of filter states provide the best performance when the

target acceleration is present. Since target acceleration is extremely difficult to estimate in the
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long range ballistic missile problem, it is suspected that performance of all filters wili be oegraded
by adding the target acceleration states to the truth model. In addition, it is doubtful that
including the acceleration states in the filter model will alleviate the problem. In fact,

performance may be degraded by integrating the poorly estimated states.

An additional benefit of using the MSOFE package for the aforementioncd Monte Carlo
analyses, is that it may (or may not) provide independent verification of results obtained from the
AFIT software. Since the simulations in MSOFE will use cortinuous-time dynamics models and
will be tesied with independent software code, any major differences in results may shed light on

the particular truth model simulation in the existing AFIT software.

1.3.3 Incorporation of Laser Measurements into Elemental Filters. Based on insight from
previous research, it is expected that a truth model that incorpcrates the six-state jiiter model, the
pogo phenomenon and four target dynamics states will be used for this research. It is desired that
the filter including the pogo states that performed best ia the previous analysis be used to develop

the optimal filter that directly estimates hardbody center-of-mass location.

The results from the previous step will be combined with the last three vears’ research to
design and evaluate a filter that incorporates the low energy laser measurements with no
intentional decoupling of the offset state from the other states. This research wiil incorporate the
Doppler measurement model developed by Herrera [14]. The reason this model was chosen is
that it delivers offset measurements that are not corrupted by any bias due to plumz speckle
reflectance. The Doppler measurement model is also a more realistic simulation of the real world
since it incorporates the 3-dimensional reflectivity model developed by Evans [9). To establish

the validity of the new filter, the simulations will be chosen such that the highest quality of LEL
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measurements are produced. Therefore, initial tests of the filter will be under the most benign

conditions (i.e. low probability of miss, high signal-to-noise ratio, and short LEL wavelength as

described by Herrera).

The key difference of the new elemental filter will be the inclusion of the pogo dynamics
model in the design, under the assumption that its undamped natural frequency and expacted rms
amplitude are known. Another key feature of the elemental filter will be the revision of the filter
states such that the target dynamics states describe the hardbody center-of-mass, as opposed to the
plume intensity centroid. Performance of the filter will be analyzed via Monte Carlo simulations
in the AFIT software. The intent of this objective is to build a single elemental filter which can
eventually be incorporated into a MMAF structure, allowing that adaptive structure to identify the

actual undamped natural frequency and rms amplitude of the real-world pogo phenomenon,

1.34 Multiple Model Adaptive Filter Design and Analysis. After a single, optimal filter
structure that utilizes all both the FLIR and LEL sensor measurements is established, the
preliminary work for a MMAF can begin. The MMAF is an algorithm that incorporates several
filters running simultaneously. The algorithm monitors the errors from each filter and selects the
solutions from the filters with the lowest errors at any instant in time. A MMATF allows the
tracker to use a filter that is tuned for the exact conditions in existence, as opposed to a general
filter tuned for a wide variety of conditions. A block diagram of the structure of a MMAF is
shown in Figure 1.2. In Figure 1.2, %, is the filter estimate, ry is the error, or residual, and py
denotes the probability weighting factor that determines which individual filter solutions are used

at the particular instant in time.
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The first step in the design of the MMAR is to identify the elemental filters that will be

used in the filter bank. The parameter values, g, that the filter is based on will be varied and the
filter tuned for maximun: performance based on those different assumed values. Since the design
of the elemental filter described in the previous section was dependent on prior knowledge of the
pogo conditions, frequency and amplitude of the pogo oscillation will be the parameters chosen
for variation in the MMAF structure. The tining process will result in a series of filters with
identical structure, but each tuned for optimal performance under different target conditions
(specifically, pogo conditions). A baseline performance for each of the above filters must be
established through Monte Carlo analysis before moving to the next step. This research actually
accomplishes the design of one such elemental filter, as the essential first step to the design and

analysis of such an MMAF.,

Once the individual filters have been selected, they may be incorporated into the adaptive
algorithm structure. Then, the entire MMAF could eventually be evaluated via Monte Carlo
sensitivity analysis. This analysis could be compared to the baseline performances previously
established with the elemental filters to determine adequacy of the adaptive parameter estimation.
The observability tests described in the first objective, combined with the tuning accomplished for
the elemental filters, may provide the insight to develop alternate adaptive algorithms. It is
expected that the performance of the MMAF or MMAFs will eventually be better than any filters

previously designed.

1.4 Thesis Overview

This chapter has described the past AFIT research in the use of Kalman filters to track

airborne targets. It has also introduced the specific problem research that this thesis will be
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directed toward solving, and the approach and objectives have been set in the process. Chapter

II contains a basic discussion of linear Kalman filter theory and the multiple model adaptive
algorithm. It also contains a description of the coordinate frames used in the thesis and how they
relate to the simulated tracking scenario. The truth models used in the thesis are presented in
Chapter III, as well as specifics on how the various FLIR and LEL measurements are modeled.
Chapter IV contains a development of the filter models. Chapter V describes thes procedures and
results obtained from the preliminary observability studies, including both the observability
gramian tests and the MSOFE Monte Carlo simulations. Chapter VI will portray results from the
simulations completed with the AFi1 software. Finally, Chapter VII lays out the conclusions and

recommendations for future research efforts.
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Ii. Filtering Techniques and Reference Coordinate Systems

2.1 Introduction

This chapter describes the technical filtering theory upon which the thesis is based. A brief
review of the linear Kalman filter (LKF) is given. Since the new filter designs incorporating the
plume pogo states and the low energy laser measuwrements require & nonlinear measurement
update, the extended Kalman filter equations for a nonlinear update are also reviewed. This
chapter is meant only as a review and the reader is referred to the source literature for a more
thorough development of the topics [21]. The elemental filters are based on the theory presented
in the Kalman filter (KF) section, but the structure of the Multiple Model Adaptive Filter (MMAF)
is also discussed briefly in this theory chapter. Although this thesis did not develop an MMAF
algorithm, the original intent was eventually to incorporate the elemental filter that was developed

into a MMAF, so the theory is presented here for completeness

In addition, the author has included a section that explains the reference coordinate
systems utilized throughout the thesis. The reference system used for the real world three
dimensional simulation space is presented first, followed by all the other reference systems and
appropriate coordinate transformations necessary to accommodate the appropriate sensors and

corresponding filter algorithms.

None of the theory contained in this chapter has changed and all of it has been developed
in previous theses. Consequently, the author has taken the liberty of borrowing heavily from the

excellent presentations made by his predecessors [8,9,14,40].
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2.2 Kalman Filter Theory

2.2.1 |Introduction. A Kalman filter (KF) is "an optimal recursive data processing
algorithm"{21]. The KF uses all available information to estimate the current values of variables
of interest (the state vector) of a system. The KF arrives at its estimate through a priori
knowledge of the system and measurement device dynamics; statistics of noise corruption,
uncertainties, and measurement errors; system noises and uncertainties; and initial conditions. The
estimate provided by the KF is the optimal estimate if the system: can be modeled as linear and
driven by white Gaussian noise. The optimal estimate will be better than any estimate available
from any single measuring device. The important feature about the KF is that it not only directly
models the variables of interest, but also models errors so that it provides estimates of how
accurate it "thinks" the state estimate is (through the filter covariance). The following is a
simplified version of the development presented by Maybeck [21]. For a rigorous development
of the Kalman Filter theory and MMAF algorithm, the reader is referred to Maybeck’s Stochastic
Models, Estimation, and Control, Vol. 1 and Vol. 2. The sections describing the Kalman filter
were reproduced from Evans and Herrera [9,14] and the MMAPF section is repeated in whole from

Herrera [14].

The a priori statistics of the mean and covariance provided to the filter as initial state
conditions are defined by:

E{x(t)} = £, (2-1)

E{[x(ta) - 2, 1x,) - 3.]” =P, (2-2)
where the notation () indicates an estimated value, and E{ } is the expectation, or ensemble

average, of the possible outcomes. The Kalman filter receives measurements at a prescribed
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sample rate and propagates the state conditioned upon the measurement time ! 'story Z(¢,), given
as:
z(t,)
ze) =| . 2-3)
(1)
where z(1) is the measurement data available at sample time #. Then the conditional mean and

covariance of the state variables are given by:

£2t') = Elx(t) | 2¢) = 2} (2-4)

P(t)) = E(x(t) - 2uNe() - 2¢O | Z() = Z} (2-5)

where Z, is a specific realization (observed set of values) of the measurement history Z(z,).

2.22 Linear Kalman Filter. The simplest form of Kalman filter, the linear Kalman filter,
is developed in this section. In order to develop the linear KF, a mathematical model of the
system dynamics must be established and measurements must be available. A system is generally

modeled with a set of linear state differential equations of the form:

2(1) = F()x(r) + BOu(t) + GOW() (2-6)

where

F(r) = homogeneous state dynamics matrix

x(1) = vector of states of interest

B(t) = control input matrix

u(t) = deterministic control input vector

G(1) = driving noise input matrix

w(t) = white Gaussian driving noise “ector
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The m» o« of the white Gaussian driving noise vector is:
Ew@)} = 0 2-7
and the noise strength is Q(1):
Ewow(t + D7} = Q)8(1) (2-8)
The equivalent discrete-time system model of Equation (2-6) is needed to implement the
algorithm on a digital computer. The general form of the discrete-time state space form (denoted

by the d subscript) of that model is given by:

x(t,) = D@, 1)x) + B,(t)u(t) + w,(t) (2-9)
where
&(1,,1,) = the nx n system state transition matrix that satisfies the
differential equation and initial condition:
d[d(t
_£%4E=mem) 2-10)
@) =1 @2-1n
and where
x(t) = discrete-time vector of states of interest
Bj1) = discrete-time control input matrix
u(t) = discrete-time deterministic control input vector
wqt) = discrete-time independent, white Gaussian noise process

with mean and covariance statistics define.* as:

Elw,(t)} = 0 (2-12)

Q,@) ¢ = 4 (2-13)

0 LEL

Elw,(t,)w d’(tj)} =

2-4




with

Q,(t) = ffb(tm,'c)G('c)Q(t)G’('c)CP’(t,,,.t)dr (2-14)

The Kalman filter incorporates measuremert information from external measuring devices
to improve its estimate of a desired state. The discrete-time (sampled data), lincar measurement

model is of the form:

2(t) = H(t)x(t) + v(t,) (2-15)
where
z(t) = m-dimensional measurement vector at sample time ¢
H(1) = state observation matrix
x(t) = vector of states of interest
v(t) = white Gaussian measurement noise

The discrete white Gaussian measurement noise v is independent of both x(¢,) and w for all time,
and has a mean and covariance, R, given by:

E) = 0 (2-16)

R(t) ¢ =y (2-17)

fL*

E{v(t,)vT(tj)} =

The Kalman filter propagai>s the <tate conditional mean and its covariance from the
instant in time immediately following the most recent measurement update, #,*, to the instant in
time immediately preceding the next measurement update, ¢,,", by numerical integration of the

following equations:

£/t = FO)R(11,) (2-18)




B(t) = F@PGl) + Pt )FT() + GOQMGT() (2-19)
where the notation ¥ (#/1) denotes optimal esti uates of x at time ¢, conditioned on measurements

through time ¢, and with initial conditions:

2(t,/1) = 21") (2-20)

P@/t) = P() (2-21)
where ¥ (*) and P(¢") are the results of the previous measurement update cycle. At time ¢, , &,

and P, from Equations (2-1) and (2-2) are used to initialize the first propagation.

That update cycle, when a measurement becomes available at time ¢, is based on the

following update equations:

K@) = PU)H(t)H@)PEOHTM) + R (2-22)
2') = £7) + K@)a(r) - H@)2)) (2-23)
P(t}) = P(1) - KG)HQ)P() (2-24)

where K(t) is the time-varying Kalman filter gain matrix that assigns "weights" to the new
information (consisting of the difference between the actual measurement and the filter's
prediction of the measurement, H(z)x(1;), as seen in Equation (2-23)) based on known

measurement noise statistics and filter-computed covariances.

In some instances (as with the case when pogo is included in the elemental filter), the

discrete-time measurement update is a known nonlinear function of the state vector. In such cases,
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the following nonlinear extended Kalman filter update model is used in place of Equation (2-15).
The measurements are modeled as:

z(1) = Blx(t), 4] + v(1) (2-25)
where A[-,7] is a known vector of functions of state and time, and v is the same discrete white
Gaussian measurement noise as defined before. When a nonlinear measurement is available,
Equation (2-22) is still used to determine the Kalman filter gain matrix, but the matrix H is

defined by:

. omlx, _
H[1; 200)) __[a‘;.ﬂ (2-26)

x = 8()
The updated state vector becomes a function of the nonlinear residual, [z(r) - A[X(#),t)] and

Equation (2-23) is modified to become:

2e') = 27 + K@){ze) ~ B2, 1]} (2-27)

2.2.3 Muliiple Model Adaptive Algorithm. The optimality of the state estimator is
dependent upon complete knowledge of the parameters that define the best model for system
dynamics, output relations, and statistical description of uncertainties [22]. For Kalman filter
tracking applications, maximum performance is achieved when the parameters of the filter
dynamics model match the parameters of the target being tracked. Ofien, the parameters are
known only with some uncertainty and may exhibit time-varying characteristics (such as in the
case of maneuvering targets with changing acceleration leveis). Thus, there is a need to devise
a method that produces optimum state estimates despite the incomplete a priori knowledge of

parameier values, and provides the estimates in an adaptive, on-linc fashioi. The MMAF satisfies

these requirements [22].




To implement the MMAPF algorithm, it becomes necessary to discretize the parameter
space by the judicious choice of discrete values that are representatively dispersed throughout the
continuous range of possible values. For the tracking problem at hand, a target can display K
different discrete sets of pogo conditions corresponding to one of K discrete combinations of pogo
oscillation frequency and magnitude. As previously shown in Figure 1.2, a Kalman filter is then

designed for each choice of parameter value, resulting in a bank of K separate elemental filters.

Let a denote the vector of uncertain parameters in a given linear state model for a
dynamic system. A system model would be represented by the following first-order, stochastic
differential equation:

20 = F@)x() + B@u() + G@)w(r) (2-28)

with noise ¢ upted, discrete-time measurements given by:

z(t) = H(a)x(1)) + v(t) (2-29)
where
x(t) = n-dimensional system state vector
u(r) = r-dimensional deterministic control vector
w(t) = s-dimensional white, Gaussian, zero-mean noise vector
process of strength Q(a)
z(t) = m-dimens onal measurement vector
v(t) = m-dimensional discrete-time white, Gaussian, zero-mean
noise vector process of covariance R(a)
F(a) = nx nsystem plant matrix

B(a) = nx rinput distributon matrix

G(a) = n x s noise distribution matrix

H(a) = m x n matrix relating measurement to states




The parameter vector, 4, is discretized :nto a set of K finite vector values, a,, @,,...dx, and
associated with each a, is a different system model of the form given by Equations (2-28) and
(2-29). Each elemental Kalman filter, tuned for a specific a,, produces a state estimate which is
weighed appropriately using the hypothesis conditional probability p,(r) to produce the state

estimate £,,,.,, () as a probabilistically weighted sum, as shown in Figure 1.2 on page 1-9, where:

(z,a,.Z2,_)p,(_)
Pty = ‘{;(n,)la.zu,_,) z,a,,2,)p0,, 230

jzl:fz(:,)ln.zu,_‘)(zl |a p2 Py

exp{+}
02 9V WBThG

fx(l,)la.zu.-.)(ztIat'zl-l) =
(2-3D

{'} = {‘%r:(tlmzl(tl)r‘(tl)}

with
At) = kth filter’s computed residual covariance
= H,(t)P(t;)H,(1) + Ry1)
r(t) = kth filter’s residual
= [z(t) - H(t)$,(1;) ]
a, = parameter value assumed in the kth filter
P(1/) = kth filter’s computed state error covariance before
incorporating the measurement at time ¢

Z(t,,) = measurement history up to time ¢,

The residual of the kth elemental Kaiman filter, that best matches the current pogo
conditions associated with the parameter value a,, is expected to be smaller than the residuals of
the other misinatched filters, so that the exponential term in Equation (2-31) is smallest for the

kth elemental filter. Therefore, the hypothesis conditional probability given by Equation (2-30)
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with index corresponding to the "correct” fliter will then be the largest among the conditional
probabilities, thus assigning the most weight to the "correct” state estimate. This algorithm
performs well if each elemental filter is optimally tuned for best performance for specific pogo
conditions, causing its residual to be distinguishable from those of the mismatched filters. It is
also important not to add excessive amounts of pseudonoise to compensate for model
inadequacies, as is often done in conservative tuning of single Kalman filters, since this tends to
mask the distinction between good and bad models [21]. If the quadratic forms within the
exponentials of Equation (2-31) are consistently of the same magnitude, then Equation (2-30) will
result in the growth of the p, associated with the filter with the smallest value of | A, L The
values of | A, | are independent not only of the residuals, but also of the "correctness” of the
K models, and so the result would be totally erroneous [22). Therefore, the scalar denominator
of the exponential in Equation (2-31) might be removed in the final implementation of the

algorithm.

The output of the MMAF algorithm is the probability-weighted average of the elemental
filter’s estimates given by:
K
B 1) = T PR (2-32)
k=1

The conditional covariance matrix for the MMAPF is computed as:

K
P, = Y )P + 9,490 (2-33)

kel

where

ALY,
P

2(17) - Rmaf 1)
kth filter’s conditional hypothesis probability
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P(1') = kth filter's state error covariance matrix after incorporating
the measurerient at time ¢,

Since the values of p,{1,) and £,,,, (1;*) depend upon the disciete measurements taken through time

! Py (1) cannot be precomputed as in the case for the elemental filters. However, Equation

(2-30) need not be computed for the on-line filter algorithm,

‘The calculated probabilities of Equation (2-30) should be modified by an artificial lower
bound [17,22,37). This lower bound will prevent a mismatched filter’s hypothesis conditional
probability from converging to (essentially) zero. If a filter’s p, should reach zero, it wil! remain
zero for all time, as can be seen from the iterative nature of Equation (2-30). This effectively
removes that filter from the bank and degrades the responsiveness of the MiIAF to future changes
of the parameter values. If some future pogo condition maiched the model for which the p, was
locked onto zero, that elemental filter’s estimate would not be appropriately weighted and the
MMAF estimate would be in error. In previous work, Tobin [47] established a lower bound of

001 for p(t).

2.3 Simulation Space

Siinulation of the tracking scenario, which encomnpasses the target trajectory, the FLIR
sensor operation, and the low-energy laser illumination of the missilz hardbody and the generation
of the speckle return and Doppler measurements, is performed on a digital computer. A 3-
dimensional "simulation space" is generated wherein a target plume is propagated along a realistic
trajectory. Several coordinate frames in the simulation space provide the means of mathematically

projecting the target plume’s infrared image and velocity vector onto the two-dimensional FLIR




image plane [13,16,37]. In addition, these frames are utilized to project a representation of the

hardbody center-of-mass, as well as to define the start and orientation of the low-energy laser scan

for generating speckle and Doppler measurements {8,9]. This section describes the different

coordinate frames of the simulation space and covers the process of pointing the FLIR sensor at

the target during tracking. The coordinate frame descriptions and figures in this section are

repeated from Herrera [14].

2.3.1 Coordinate Frames. As shown in Figure 2.1, three primary coordinate framcs are
defined in the simulation space: a system inertial reference frame, a target reference frame, and

an a-B-r reference frame. Each of these reference frames is described in the following paragraplis.

2.3.1.1 Inertial Reference Frame. The inertial reference frame is a North-Up-East (NUE)
frame wherein the target flight trajectory occurs.

Origin: location of the FLIR sensor
Axes: e, - due north, tangent to the earth’s surface, defines zero azimuth
e)'
e, - vector completing right-hand coordinate set, defines 90° azimuth

- inertial "up" with respect to flat earth approximation

Note: The azimuth angle (o) is measured eastward from e,. The elevation angle
() is measured "up" from the horizontal plane defined by e, and e,.

2.3.1.2 Target Plume Reference Frame. This frame is located at the target plume with

one of its unit vectors co-linear with the target’s velocity vector.

Origin: plume intensity centroid

Axes: e, - along the true velocity vector
e, - out the right side of the target, orthogonal to both e, and the
LOS vector
e, - vector completing the right-hand coordinate set
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¢ . Target Prame Apparent Intensity Up
v - Centroid Image ey
¢,
Cx o
Inertial
Frame
&f o - P Plane
* w (FLIR)

Figure 2.1 Three Primary Coordinate Frames in Simulation Space

Note: , - along the velocity vector

» - perpendicula to the velocity vector

- perpendicular to both , and ,,

ppv

2.3.1.3 o - B - r Reference Frame. The a-B-r reference frame is defined by the azimuth

angle o’ and the elevation angle 8’ measured with respect to the FLIR line-of-sight (LOS) vector

e,. The true azimuth o and the true elevation B are referenced from true north and the horizon.

This frame is used to project the target’s position and velocity onto the FLIR plane.

Origin: center of FLIR FOV

Axes: e, coincident with the true sensor-to-target LOS vecter
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e, and e, define a plane perpendicular to e, rotated from inertial e, and e,
by the azimuth angle (o) and elevation angle (f)
There are three special coordinate frames associated with the a-f-r reference frame: the -

(FLIR) plane, the absolute a-f-r reference frame, and the trans-FLIR plane,

2.3.14 o - B (FLIR Image) Plane. The FLIR plane is used to obtain the measurements
of the target plume position and is the reference frame for the geometrically derived velocity
vector components of the target’s intensity centroid. The FLIR plane is defined by the e, and e,
unit vectors, with the LOS vector (orthogonal to the FLIR plane) representing the pointing
orientation of the FLIR sensor, and the high and low-energy laser. Note the orientation of the
+Ymm aXis in Figure 2.1, which allows the LOS vector to be positive towards the target when it
is considered the third member of a right-handed set of coordinates as defined by the unit vectors

€ - € - e,

Due to the large distance to the target (approximately 2,000 kilometers), small angle
approximations are invoked, allowing the "pseudo" azimuth and elevation angles, o’ and §’, to be
linearly proportional to the x and y cartesian coordinates in the FLIR plane. The x and y
coordinates are measured in pixels (a pixel of linear length corresponds to 15 pradians of arc) and
will provide a means of evaluating the performance of the Kalman filter associated with tracking

the intensity centroid of the target.

2.3.1.5 Absolute a-B-r Reference Frame. The absolute a-B-r reference frame is fixed in
inertial space at the initial a-B-r coordinates of the target. This coordinate system defines the
initial pointing direction of the FLIR LOS vector e,, and is also used to define the true and filter

estimated target positions and velocity components on the FLIR plane.
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2.3.1.6 Trans-FLIR Plane. This plane is defined as the result of translating the center

of the FLIR FOV to the true center-of-mass of the missile hardbody. The frame is used to
determine the xm ; and yg iz coordinate errors of the hardbody center-of-mass filter’s estimates,

for performance analysis purposes.

2.3.1.7 ALT/ACT Plane. This plane, shown in Figure 2.2, is a rotation of the trans-FLIR
plane by the true orientation angle 6, formed by the target trajectory with respect to the FLIR
coordinate plane. It is used to determine the along-track and across-track components of the
tracking error mean and covariance of the hardbody center-of-mass estimates [9]. This frame was

not used in this thesis,

2.3.2 FLIR Image Plane. All dynamic events associated with the target plume intensity
"pattern”" or "function,” and the active illumination of the missile hardbody in 3-dimensional
inertial space are projected onto the 2-dimensional FLIR image plane. The measurements
generated as a result of IR detection by the FLIR sensor are provided to the enhanced correlator
algorithm, which produces "pseudo-measurements” to the Kalman filter to update its state
estimates. For the missile hardbody, low-energy laser-generated measurements of the offset
distance relative to the plume intensity centroid are geometrically projected onto the FLIR image
plane. Thus, the FLIR image plane is the realm in which the performance of the Kalman filter
is evaluated. Also note that it is a natural plane for such evaluation of a laser weapon, since
pointing angle errors are critical and range is not. This section introduces the FLIR Field-Of-View

(FOV) "tracking window,"” and discusses the construction and projection of the target models.

2.3.2.1 FLIR Field-Of-View. The FLIR FOV, shown in Figure 2.3, consists of an 8 x 8

pixel sub-array (in the FLIR sensor 300 x 500 pixel array) which provides sensed information as
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+ALT (along track, and
along true velocity vector)

+ACT (across track)

+x

5

Figure 2.2 FLIR Plane, Trans-FLIR Plane, and ALT-ACT Plane

a function of the varying intensitv of the plume IR image and the background and internal FLIR
noise. Based upon this information, the position estimates from the nine-state Kalman filter serve
to center the centroid of the plume IR image in the FOV. Since the low-energy laser is
boresighted with the FOV, the filter position and velocity estimates of the intensity centroid define
the origin and orientation of the laser scan to "paint" the hardbody. The errors of the filter’s
estimates of position, velocity, and centroid/center-of-mass offset, are expressed in units of
"pixels” or "pixels"/second. These errors become meaningful through a pixel proportionality
constant, k, equal to 15 pradians/pixel [14,40]). With this constant, 1 pixel corresponds to

approximately 30 meters for a range of 2,000 kilometers.

2-16




Target Plume Formed by

Subtracting “Trailing” from
"Leading" Gaussian ;
. Intensity Function —
8x8Armay ... I N R adl B - Centroid of
of Variable Apparent Target
Intensity Pixels - Yk T Intensity Profile

+x

=

15 prads

Figure 2.3 Target Plume Image in 8 x 8 FLIR Field-of-View (FOV)

2.3.2.2 Target Models on the FLIR Plane. The difference of two Gaussian intensity
functions creates a planform that models the hotspot of the plume target on the FLIR plane [40],
as shown in Figure 2.3. The "trailing” function is subtracted from the “leading" function to
construct a suitable approximation of empirically observed plume intensity profiles. If the
computed result is negative at some point, that negative value is replaced by zero. The missile
hardbody is not sensed by the FLIR sensor. However, it is geometrically projected onto the FLIR
plane as a rectangle, located an offset di-~ - from the plume centroid along the target’s velocity

vector. Since the FLIR sensor cin iy duie IR intensity shape function of the plume, the
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remainder of this discussion emphasizes the intensity centroid model. More about the hardbody

model will be presented in Chapter ITI.

2.3.2.3 Target Plume Model on ihe FLIR Plane. The radiated energy from each intensity

function is represented as a bivariate Gaussian distribution with elliptical constant intensity

contours, Each of the two bivariate Gaussian intensity functions is given by [40]):

I'1x,,%,,,0.5,,01 = I exp(-0.5(AxAy)P*(AxAy)" ] (2-34)
where
Ax = (x - x,,)c080, + (y - ,.)sin0, measured along the along-track
(ALT) axis of Figure 2.2
Ay = (Y- Ypar)C0S6, - (x - x,,.,)sin0, measured along the across-track
(ACT) axis of Figure 2.2
8, = true target orientation angle between the projection of the velocity
vector cato the FLIR plane and the x-axis in the FLIR plane; see
Figure 3.2
x,y = coordinate axes on the a - B plane
Xoearr Ypeat = Peak intensity coordinates of the single Gaussian intensity function
... = maximum intensity function
P = 2x 2 target dispersion matrix with eigenvalues (,’ and o,,%) that

define the dispersion of the elliptical constant intensity contours, and
eigenvectors that define the orientation of the principle axes of these
ellipses

Figure 2.4 illustrates the spatial relationship between the two intensity functions along the target

e, axis. The displacement values arc based on the assumption that the dispersion of the exhaust

plume in the e,, direction (normal to both e, and the L.OS vector) is approximately 20 times the

diameter of the missile [40]. With the dimensions of the hardbody chosen as 40 meters long and

3 meters in diameter, the centroid of the first intensity function is located 65 meters behind the
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Intensity Punctions
Resultant (Plume)
Intensity Function
Gaussian Displacement Displacement Displacement
Intensity of Centroid of Centroid of Centroid
Function along e along e - along e oo
1 - 65 meters 0 meters 0 meters
2 - 110 meters 0 meters 0 meters

Figure 2.4 Spatial Relationship of Target Plume Gaussian Intensity Functions

hardbody center-of-mass. The placement of the first centroid simulates the composite centroid
of the exhaust plume being close to the missile exhaust nozzle, whereas the position of the second
centroid enables one to simulate different plume shapes. The second, "trailing" centroid is
arbitrarily located 110 meters from the center-of-mass and the defined spatial relationship remains
fixed in the target frame during the simulation. Any external forces acting on the missile other
than thrust and gravity are assumed negligible, which thus yields an assumed zero sideslip angle
as well as zero angle of attack. These assumptions allow the semi-major axes of the elliptical

constant-intensity contours to be aligned with the projection of the target’s velocity vector onto
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the FLIR image plane, and provides a simplified simulation geometry while retaining the essential

features of the trajectory simulation.

2.3.2.4 Target Plume Projectiun onto the FLIR Plane. As the target plume is propagated
through inertial space, the output of the FLIR pixels is simulated by projecting the two intensity
functions onto the FLIR plane. The geometry of the projection is shown in Figure 2.5. The
“reference target image" is oriented on the FLIR plane to correspond to the largest apparent
planform (i.e., with its velocity vector orthogonal to the LOS vector) at a given initial reference
range, r,. As seen in Figure 2.6, the target intensity image is defined by the dispersion along the

principle axes of the two Gaussian intensity functions, given by:
_ r, (2-35)
G, = 0,, [TJ

3\
r
o = [..f.J o, * (@, - ",m) cosy)]

v I
(2-36)
- oPVI:I . "l:"‘ (AR - 1)]
where
O.» O, = the initial dispersions of the target intensity functions along e, and e,, in the
target frame of the reference image
o, 0, = the current dispersions of the target image
r, = initial sensor-to-target range of the reference image
r = current sensoi-to-target range
v = initial velocity vector of the target
v = magnitude of v
V05 = projection of v onto the a - B plane (FLIR); i.e., the component of v

perpendicular to the LOS vector
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Figure 2.5 Target Plume Intensity Centroid Projection Geometry
V,ne = magnitude of v,
Vios © Va.z + 62 (237
= target aspect angle between v and the a - B plane (FLIR)
0 = angle between v, ,; and +xg
AR = o0,/0,,: aspect ratio of the reference image

Referring back to Figure 2.4, the location of each intensity function, or "hotspot,” is

initialized as a displacement from the hardbody center-of-mass. The intensity functions are

oriented in the FLIR plane via the true target orientation angle 8, The relative positions of the




o - p Plane

(FLIR)
Resultant Plume

Intensity Function

v +yFLIR

Figure 2.6 Intensity Centroid Dispersion Axes in FLIR Plane

two intensity functions in the FLIR plane vary in response to the change in target aspect angle y
(of Figure 2.5) while the spatial relationship of the hotspots remains the same in the three-
dimensional target frame. If the plume pogo forcing input is applied, the hotspots do not remain
fixed in the target frame, causing the composite image centroid to oscillate along the velocity
vector and produce additional perturbations to the hotspot image in the FLIR plane, as will be

described in the truth and filter model sections in Chapters III and IV respectively.

2.3.2.5 Target Plume Velocity Projection onto the FLIR Plane. The general discrete-time
equation that models the target dynamics is given by:

x(t,) = @@, 1)xt) + B, ul) + G,t)w,(1) (2-38)
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where

®(r,,, t) = the system state transition matrix
x(t) = discrete-time vector of states of interest
B,(1) = discrete-time contro! input matrix
u(t) = discrete-time deterministic control input vector
G,(1) = discrete-time driving noisc input matrix
w, (1) = discrete-time, zero-mean, white Gaussian noise process with independent
components and covariance Q,

Based on the geometry shown previously in Figure 2.5, the projection of the target’s

inertial velocity vector onto the FLIR image plane is the deterministic input vector given by [13]:

. . T .
) = [a’(t‘) ﬁ/(tl)] (2-39)
where
u,t) = true target deterministic input vector
a&'(t) = target azimuth rate in the FLIR plane
B’(t,) = target elevation rate in the FLIR plane

As seen in the inertial frame diagrams of Figure 2.7, the azimuth angle can be defined as:

o(f) = arctan [é((%] (2-40)

Taking the time derivative of Equation (2-40) and noting that the sensor-to-target range is large

so that &(;) = aft,), the azimuth velocity in the FLIR plane is given by:

a0 = 6l = x(yv () - z(Hv (1) 2-41)
X0 + 2%

where

V., ¥, = components of the target’s inertial velocity in the e, and e, directions

X z
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Similarly, the elevation velocity in the FLIR plane is given by:

rw(0) = y(OF,(1 (2-42)

'/; = B(1) =
B = B() =

where

v, = component of the target’s inertial velocity in the e, direction

r, = horzontal projection of the sensor-to-target range, with its time derivative
expressed as:

v (1) + 2w (0 (2-43)

W05
A

@ Target Plume Intensity Centroid r, .\l—;z.,zz

Figure 2.7 Inertial Velocity FLIR Plane Projection Geometry
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2.3.3 FLIR Sensor Pointing Controller. The Kalman filter's propagated estimates of the
intensity centroid’s position dictate the necessary change in azimuth and elevation that the FLIR
sensor should undergo over the next sample period to center the hotspot on the FLIR FOV plane
at the next measurement sample time, Ideally, these positional estimates are fed as commands to
a pointing controller that physically implements the directional changes within one sample period
(1/60 sec). The original sample period used in the recent past for the benign trajectory scenarios
has been 1/30 second. For this thesis, tne sample period was cut in half for two major reasons.
First, it was hypothesized that the reduced sample period might allow for closer inspection of the
difficulties surrounding estimation of the atmospheric jitter states. If the reduced sample period
does not aid this investigation, it should at least reduce the differences in errors at the beginning
and end of the propagation period. The second reason that the sample period was reduced to 1/60
second was to maintain conformity with the current hardware and software being developed at the
Phillips Laboratory. The most recent prograins utilizing the FLIR and LEL measurements for

tracking and pointing a high energy laser are using the 1/60 second sample period [4].

The activation and execution of the commands to the FLIR for directional changes will
not be perfect due to the lag dynamics inherent in the controller, and the resultant mis-positioning
of the hotspot may be interpreted by the filter as target motion, causing inaccurate estimates of
futurc states. Whether or not to include the controller lag dynamics in the simulation was the
subject of a previous thesis [37]. It was found that the apparent target motion caused by the lag
dynamics are interpreted by the filter as atmospheric jitter (as a result of the choice of tuning
parameters for the filter), implying a degree of robustness on the part of the filter to track a target.
Moveover, the degradation in tracking performance due to the dynamic lag was found not to be

of primary importance. Thus, the controller is modeled as lag-free in this research.
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234 Target Scenarios. Two different scenarios were utilized for simulations in this
research. The first scenario was employed for both the stochastic observability tests and the
MSOFE Monte Carlo runs. The tracker was given the proper initial conditions of the target (to
similate a handoff from another tracker) and was to track a missile possessing the characteristics
and following the profile of a Minuteman II [4,5]. Over the ten second simulation period, a
nontinal intercept range of 200 km and negligible acceleration were assumed. In the MSOFE
simulations, the truth model was programmed to maintain a constant velocity equal to the average
value determined over the simulation period [5]. As with the reduced sample period, the reduced
range (from 2000 Km to 200 Km) was derived from intercept scenarios receny developed for
use at Phillips laboratory. The intent is eventually to revise the scenario modeled in the AFIT

software and compare filter performance under the new conditions.

The second scenario, used for the Monte Carlo simulations in thc AFIT software and
referenced throughout this thesis, was the same as used in previous theses. An Atlas type missile
is simulated traveling at a range of 2000 km from the platform with a constant velocity. The
original intent of the runs was to complcte a few simulations with the old parameters and then
eventually to update the conditions to match the first scenario. This was not done for two major
reasons. The first reason was that a direct comparison of the new filter’s performance with
previous filters was desired and the second was that the new filter including pogo states was never
satisfactorily tuned to elicit its maximum performance potential. A complete description of all
initial conditions and flight parameters of the truth model is contained with the truth model

description in Chapter III
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2.4 Summary

This chapter presented the theoretical background required to understand the research
explained in the rest of the thesis. It briefly developed the linear Kalman filter for both
continuous and discrete-time processing, and it also presented the extended Kalman filter
modification to the update equations to allow for nonlinear measurement models to be used. The
mathematical models presented in the Kalman filter section will relate directly to the truth and
filter models described in Chapters III and IV respectively. Section three of this chapter contained
a complete description of the various coordinate frames used for the simulations. The different
coordinate frames were required in order to simulate the scenario realistically in inertial 3-space
and to transform the missile trajectory into coordinate systems useful for sensor and computer
processing. The third section also outlined the inter-relationships of the coordinate frames.
Finally, this chapter briefly summarized the pointing controller for the HEL and the two target

scenarios exploited in the thesis.
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IIl. Truth Model

3.1 Introduction

In order to analyze the tracking algorithms of interest successfully, they must be subjected
to as many of the dynamic variables that would be encountered in the real world as possible. The
truth model is a mathematicai model derived for simulation purposes which embodies all of
pertinent states necessary to create a realistic environment in which the filter will operate [21].
In theory, an absolute truth model could be of infinite dimension. In practice, only the dominant
characteristics that will affect the system of interest need be modeled. The truth model should
be developed through thorough testing and analysis of data collected in the real world from the
measuring instruments. Shaping filters should then be developed and compared to the empirical

data to validate the model.

This chapter will present the truth filter models used for development and testing of the
elemental linear Kalman filters in the AFIT simulation. It will also cover the models used to
generate measurements for the filter updates and the detailed parameters used for the truth model
simulation (initial conditions, etc). Since the AFIT truth model has remained virtually unchanged
since the previous thesis, the portions discussing the model were taken from Chapter IV of

Herrera's thesis [14] with minor alterations.

The models used for MSOFE [6] were reduced-order versions of the model used in the
AFIT software and described in Section 3.2, that incorporated a subset of the major characteristics

desired for the observability studies. They were also implemented as continuous-time
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dynamics/discrete-time measurement models in MSOFE as opposed to the discrete-time dynamics
equations employed in the AFIT software. The truth models and filter models used for MSOFE
were identical except for the different tuning values that adjusted noise levels in the filter. The
reader she: zid review the next section for an understanding of the entire truth model and refer to

Chapter IV for the specific models used for MSOFE analyses.

3.2 Truth Dynamics Model

The essential conditions which must be generated in the AFIT truth model include the
underlying dynamic states of the target, jitter from atmospheric disturbances, bending/vibration
of the host platform, and measurement noises in the sensors. As previously noted in Chapter I,
the outh model was originally developed when only FLIR measurements were available. As a
result, the truth dynamics model defines the target in terms of the image intensity centroid, not
the missile center-of-mass. The true location of the hardbody is determined by adding a constant
centroid to center-of-mass offset (87.5 m) to the equilibrium point about which the centroid
oscillates. The system describing the target image includes the following fourteen states
[14,17,31,40]:

2 target dynamic states

6 atmospheric states

4 mechanical bending states

2 pogo oscillation states
The dynamics of the image intensity centroid are represented as positional changes in the FLIR
plane, with the centroid components x, and y, being measured in pixels from the center of the

FOV in the x and y FLIR plane directions. Referring to Figure 3.1, the position of the target

image centroid at any one time is given by:
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X, =X +X + X, + %000, G-1)

Y. =Y, * ¥, * Y, - xsind, 3-2)
where
x, y, = target image intensity centroid coordinates
x,y, = coordinate deviation due to target dynamics
X, y, = coordinate deviation due to atmospheric jitter
%, ¥, = coordinate deviation due to bending/vibration of optical hardware
x, = coordinate deviation due to pogo oscillations along the velocity vector direction
0, = uue target orientation angle

............................................ | S

\—a-BPlane(FLIR)

Figure 3.1 Plume Intensity Function Position on FLIR Image Plane
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Note the minus sign before the resolved pogo component in Equation (3-2) due to the coordinate
definition of the FLIR coordinate frame. The states x,, x,, X,, X,, ¥,, ¥,, and y, comprise the output
states which are extracted from an overall state model in the form of fourteen coupled scalar
stochastic differential equations. The states x, and y, are each modeled by first-order differential
equations; x,, y,, and x, are each modeled by second-order differential equations; and x, and y, are
each modeled with thirg-order differential equations. These differential equations, when in state-

space format, comprise the dynamics portion of the FLIR tracker truth model.

The 14-state model state vector is described by a first-order, stochastic differential
equation given by (note the use of the capitol T subscript to denote reference to the truth model,
as opposed to a lower case ¢ to reference variables associated with target dynamics):

£.(t) = Fx, (0 + Bu () + Gw () (3-3)
where

F, = 14 x 14 time-invariant truth model plant matrix
Xy (1) = l4-dimensional truth model state vector
B; = 14 x 2 time-invariant truth model control distribution matrix
ur(t) = 2-dimensional deterministic input vector
G; = 14 x 14 noise distribution matrix (G, = 1)
wy(1) = l4-dimensioaal, white Gaussian noise process with mean and covariance

kernel statistics:

Ew, (O} = 0
(3-4)

Efw (Dwy(t + ) = Q.89
To simulate the target dynamics model on a digital computer, the following equivalent

discrete-time solution to Equation (3-3) is given by:
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X (0,,) = P, 0)%,(6) + Brup,(t) + Gy wy, (1) (3-5)
where the state transition matrix &, (¢,,) is the solution to the differential equation:

ao.(, 1)

— = Fr®(, 1) (3-6)

with the initial condition: &, (¢, ,) = I, (note that, for constant F,, &, (t,¢,) can be expressed
as @, (1-4)) and

X, (1) = l4-dimensional discrete-time truth model state vector
B,, = 14 x2 discrete-time truth model control distribution matrix
Up(t,) = 2-dimensional discrete-time input vector
G;, = 14 x 14 discrete-time noise distribution matrix, (G, =D
wra(t,) = 12-dimensional discrete time, white Gaussian noise process with mean and

covariance statistics:

Etw,, ()} = 0 37

Elw, ()WL) = Qpy = f(b,(tm - 16,Q,GI VN, - D (3-8)
‘l

where Q is defined in Equation (3-4). The discrete-time input distribution matrix By, is defined

as:

‘Il

B,, - fcb,(tM - VB, dv (3-9)

'l
Note that this computation assumes 4, () is constant over each sample period: u; (¢) = u,f1,) for

all r € [1,,¢,,). This input simulates a true constant velocity trajectory for the missile.

‘The fourteen states of the discrete-time truth model are defined in the x and y coordinate

axes of the FLIR plane as:
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1 target state

3 atmospheric states

2 bending/vibration states
2 plume pogo s:ates (position and velocity

Yeur

1 target state
3 atmospheric states
2 bending, ibration states

where the plume pogo states are in neither the xp, nor yg, direction but defined along the

velocity vector. These states are augmented into the truth model state vector:

where

2-dimensional target dynamics state vector
6-dimensional atmospheric state vector
4-dimensional bending/vibration state vector

2-dimensional plume pogo state vector

The 14 x 14 discrete-time truth model state transition matrix &, is given by:

(3-10)

(3-11)

where the partitions correspond to the dimensionality of the states defined above. The 14 x 2

discrete-time truth model distribution matrix B,, is given by:




1" 3-12)

where B, is a 2 x 2 discrete-time control distribution matrix. The 14-dimensional discrete-time

truth model white Gaussian noise process wy, is given by:

0
w
ad
- (3-13)
Wrg = |-
wbd
-w’d-
where
w.{t) = 6-dimensional discrete-time, white Gaussian noise related to atmospheric
jitter states
w,(t) = 4-dimensional discrete-time, white Gaussian noise related to bending states
w,{t) = 2-dimensional discrete-time, white Gaussian noite related to plume pogo

states

The block diagonal form of Equation (3-5), as seen in Equations (3-10) through (3-13), allows the
models for target dynamics, atmospheric jitter, bending/vibration, and plume pogo to be presented
separately. The following sections discuss each of the discrete state models which form the

stochastic discrete-time truth model.

3.2.1 Target Dynamics State Description. As depicted in Figure 3.2, the a-f plane (FLIR
image plane) is coincident with the FLIR sensor FOV, and perpendicular to the LOS vector e,.
In the simulation, the 3-dimensional target dynamics are projected onto the FLIR image plane, and
the position components of the target’s intensity centroid are obtained from the azimuth and

elevation displacement angles (o “ and 3°, respectively). Since the target distance is simulated
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Figure 3.2 Target Centroid Image on a-p Plane with "Pseudo” Angles

as 2,0(. ) kilometers, small angle approximations are used for measuring the angle displacements
in the cartesian coordinate system of the FLIR image plane. These "pseudc"” angles, o and B °,
are referenced from the current LOS vector and measured in microradians. Note that the unusual
orientation of the +yq .z axis in Figure 3.2 allows the positive z axis to be in the positive e,

direction (by the right-hand rule).

The linear translational coordinates, x, and y, of Equations (3-1) and (3-2), locate the
target intensity function on the FLIR plane and are measured in pixels of displacement from the

center of the FLIR FOV. The angular and linear measurements are related by the pixel
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proporticnality constant k,, which is the angular FOV of a single pixel. Presently, the value of

k, is approximately 15 microradians per pixel for long range targets [8,40].

3.2.1.1 AFIT Discrete-Time Target Dynamics. The derivation of the state space model of
the terget dynamics assumes that the azimuth and elevation rates (& ” and B~ respectively)
remain essentially constant over each sample period Ar. Then the discrete-time target dynamics

model is:

‘A
£(t,) =x(1) + (a (A1) (3-14)

P

Y.) =y ) -

B (A (3-15)
k
P

Arranging these equations in state space form yields:

x,,) = ®,,.1)x¢) + Bu,(,) 3-16)

x’(t“l)-l r‘l ()1 x,(t‘) .A-i C ('X/(tl)
k

-+ P

@3-17)

At

y,(tiol) O 1 }’[(I‘.) O --Z: B./(tl)

where
at) = da’/dt, measured in microradians/second and constant over the time interval
At
B‘(t,.) = dB “/dt, measured in microradians/sccond and constant over the time interval
At

Ar = ample time interval, ¢,, - ¢, (1/60 seconds)

k, = pixel proportionality constant (15 microradians/pixel)




Using these 1ciationships in block form of the overall truth model, by inspection of Equation

(3-11), the upper left block is:

10 .
®, = (3-18)
01
and the upper block of Equation (3-12) is:
-
At
s | 5 (3-19)
td At
0o --=
L5

and the input vector in Equation (3-5) is given by:

a/(t) (3-20)
brg =|.
p'(r)
. minus sign of the lower right term in Equation (3-19) is due to the difference in the y axis

otiencation between the inertial coordinate frame and the FILIR coordinate plane.

The two target dynamics states of Equation (3-10) are used to propagate the missile along
its trajectory. The formulation of the truth model target dynamics states in deterministic state
space form has two advantages. First, Equation (3-17) can be substituted back into Equation (3-5)
to form a single augmented vector differential equation that defines the truth model. Second, the
state space form allows the addition of white (or time-correlated) noise to Equation (3-17), if a

stochastic, rather than a deterministic dynamics model, is desired.

3.2.1.2 MSOFE Continuous-Time Target Dynamics. As shown in Chapter IV, an
equivalent continuous-time dynamics constant velocity model was simulated in MSOFE by letting

the deterministic input vector of Equation (3-20) equal zero. Two velocity states (along the FLIR
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plane axes) were augmented to the state vector for a total of four states describing target

dynamics. The desired constant velocity trajectory is achieved by designing the plant matrix, F,,

in Equation (3-3) such that the target dynamics are modeled by £ = vand ¥ = g = 0.

3.2.2 Atmospheric Jitter Model. The model for the translational displacement of the
intensity function due to atmospheric disturbances, is based on a study by The Analytic Sciences
Corporation [31]. Using power spectral density characteristics, the atmospheric jitter phenomenon
in each FLIR plane axis direction can be modeled as the output of a third-order shaping filter
driven by white Gaussian noise [31]. The Laplace domain representation of the shaping filter

transfer function is given by:

x,() . Kamlmi G-21)
W) (s + 0)s + o)

x, = output of shaping filter (%, direction)

w, = zero-mean, scalar, unit-strength white Gaussian noise
K, = gain, adjusted for desired atmospheric jitter rms value
o, = break frequency, 14.14 radians/second

®, = double-pole break frequency, 659.5 radians/second
The atmospheric jitter effects can be modeled similarly in the yy ; direction, where y,
would be the output of an identical shaping filter defined in Equation (3-21). The two shaping
filters are assumed to be independent of each other and can thus be augmented to form a six-state
model. The linear stochastic differential equation that describes the atmospheric jitter is given by:
(0 =Fx()+ Gw/() (3-22)
where

F, = 6 x 6 time-invariant atmospheric jitter plant matrix

x,(t) = 6-dimensional atmospheric jitter state vector
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G, = 6 x 2 noise distribution matrix
2-dimensional, independent, zero mean white Gaussian noise with unit
strength and independent components described as:

W,(1)

Ew @) =0

10 (3-23)

Ew,t)w]()} = Q,5(1) = 8(1)
01

The six atmospheric states in the state vector correspond to the low frequency pole and the higher
frequer.cy double pole in the x;;;; and the yq  directions. The atmospheric jitter plant matrix is

defined in Jordan Canonical form as:

%, 0 0 0 0 O
0 -0, 1 0 0 0

= HES S B
0 0 0 0 -0 !
000 0 0 0 -o

The noise distribution matrix G, is:




Koo
— 0
(ml - a)g)
K oo
- a 10')2 . 0
(0, - o)
Ka(")l(’)g 0
G -| @ (3-25)
’ 0 K00
(0, - o)
0 Kawlwg
(0, - ©)
0 anlmg
(0, - ©,)

The equivalent discrete-time model for Equation (3-22) is of the form:

xa(thl) = (b-(thl’ “l)xa(ti) + wda(ti) (3.26)

The augmented six-state state transition matrix derived from the time-invariant plant matrix of

Equation (3-24) is [31]:

where

@, 0 0 0 0
O q)a22 q)aZS 0 0
0 0 < 0 0 0 2.
D (AN = N @27
0 0 ¢, O 0
0 0 0 0 ¢, P
0 0 0 0 0 P
P, = ®, = exp(-Ar)
D, = G5 = expl-mAl)
q)uli = q’a.‘d = A1 exP('mzA‘)
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Dy = D5 =  exp(-wAr)

B
it

sample time interval, 1, - 1,

The 6-dimensional, zero-mean, discrete-time, white, Gaussian noise w,(t,) has statistics defirned
as:

Elw ) =0

i (3'28)
Etw ¢ wie) = Q,, = f(b,(tm-t)G.Q‘G,’df(tM—t)dt

i

The individual components of Q,, are not included here due to their length and complexity;

however the reader may refer to the software for a full description [30].

For the approximated two-state atmospheric jitter model, only a single-pole shaping filter
is used in each direclion to produce the approximated PSD. The state space equations are
truncated from six to two states with only the first the break frequency, w,, used in each direction.
The plant matrix in Equation (3-24) becomes a 2 x 2 with -o, as the diagonal terms and Equation

(3-25) also becomes 2 x 2 with K,», on the diagonal.

3.2.3 Bending/Vibration Model. The mechanical bending states were added to the truth
model to account for the vibrational effects in the FLIR data that occur when the sensor is
mounted on a moving, non-rigid optical platform [17]. Based on tests at the AFWL (now Phillips
Laboratory), it was concluded in previous research [17] that bending effects in both the x,,; and
ynr directions can be represented by a second order shaping filter, driven by white Gaussian

noise. The Laplace domain transfer function for the bending model is:

X9 K0, (3-29)

wi(®) s+ Ao,s + o,
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where

x, = FLIR plane positional offset (x,, direction) due to mechanical bending
disturbance
w, = zero-mean, unit strength, white Gaussian noise
K, = gain adjustment to obtain desired rms bending output,
(K,? = 5 x 10Prad*/sec®)
U, = damping coefficient, equal to 0.15
©,, = undamped natural frequency for bending, (o = & rad/sec)

The FLIR plane positional offset in the yg 1 direction, y,, is identically modeled with the
shapiug filter defined in Equation (3-29). The two shaping filters are assumed to be independent
of each other and can thus be augmented to form a four-state model. The linear stochastic

differential equation that describes the bending/vibration is given by:

2,0 = Fx,( + Gw,() (3-30)
wilere
F, = 4 x4 time-icvariant bending plant matrix
x,(t) = 4-dimensional bending state vector
G, = 4 x 2 noise distribution matrix
wy(1) = 2-dimensional, white Gaussian noise process with unit strength

components that are independent of each other:

Elw, 0} = 0

10 (3-31)

Elw, (0w, (t+0)} = Q,(1) = 8(t)
01

The bending/vibration plant matrix is defined as:
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[0 1 0 0 |
2
o | -2, 0 0 (332)
b 0 0 0 1
0 0 —m,z,,, -2{,0,,

The noise distribution matrix G, is:

[0 o0 ]
2
G - a),.,,kp 0 (3-33)
*“lo o
0 w:"kPJ

(Note that k, is the pixel proportionality constant.) The equivalent discrete-time model for

Equation (3-30) is of the form:

xb(tlﬂ) = B, 1)x,0) + w,, (1) (3-34)
where
d)bll ¢012 O 0
(I) (AI) - b2i (DMZ O O (3-35)
y 0 O q)b_ﬁ (bb.“
0 0 o, o,
and
d,, = D, = exp(-c,ANlcos(w,AN) + (0,/w,) sin(w,Ar)]
®,, = P, = exp(-0,A0[(1/0,) sin(w,An]
b,y = Dy = exp(-0,AN[-1 - (0,/w,) sin(w,An)
Dy, = D = exp(-0,AN[cos(w,A0 - (0,/0,) sin(w,Af)]

Ar = sample time interval, 1, ¢,
o, = real part of the root of the characteristic equation in Equation (3-29),
(0, = 0.47124 second™)
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®, = imaginary part of the root of the characteristic equation in Equation (3-29),
(w, = 3.10605 radians/second)
The 4-dimensional, discrete-time, white Gaussian noise process vector w,(r,) has mean and
covariance statistics:

2w, ) = 0

(3-36)
Etw, (6w = Q,, = f ®,(t,,-VG,0,GIPL, -1 d*

3.2.4 Plume Pogo Model. To account for the oscillatory nature of a typical missile plume
in the boost phase, a plume pogo model was developed [40]. A second-order Gauss-Markov
model was generated using physical insight, and visual observation of the pogo phenomenon. The
model allows for the study of the amplitude and frequency characteristics of the oscillatory nature

of the plume, and of the effect upon tracking a missile using a Kalman filter.

The transfer function of the plume pogo model is described in the Laplace domain as:

2
x,(s) _ Ko, 437)

w (s 2 2
(8 5. ZC,,(D..,,S + o,
where

x, = plume pogo sheping filter output along the direction of the velocity vector
w, = zero-mean, unit strength, white Gaussian noise
{, = assumed damping coefficient, ({ = 0.05)
w,, = nominal undamped natural frequency for pogo; assumed range is 0.1 - 10
Hertz, with a nominal value of 1.0 Hertz
K, = gain adjustment to obtain desired rms pogo amplitude determined by (40}:
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(DN,

4 3-38)
K, = ZGPJ.__P._ (3-38.

where

o, = desired rms pogo along the velocity vector

The linear stochastic differential equation that describes the plume pogo is given in state

space form as:

0 1 0 -
) =| }x,(r) s o w0 (3-39)
[—m,,,, -2Cpm"” X, Onp
where
x,(1) = 2-dimensional pogo state vector composed of pogo position ang velocity
states
w,(t) = l-dimensional zero-mean, white Gaussian noise with statistics:
Ew@! =0
w0 (3-40)
E{wp(t)wp(t+'c)} =Q,0(-v; Q, =1
The equivalent discrete-time model for Equation (3-39) is of the forin:
x(6,) = @3, 00,) + w, (1) (3-41)
o (A D (AN
x(t,) = ! e (1) + W () (3-42)
¢, L) D,(A)
where
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el
An = 1 exp(-{,w, As)sin m,w‘/l—r’ * + arctan ﬁC %
‘[ 1 —C: P

pll

1

¢, A = ....._...__;:exp(—CPa)MAt)sin (o) L'PAI
Ouy -4 (3-43)
®,,,An = iexp( g0, Ansin ((v)m[—tpAt)
-
P,,(AN) = _—exp(- C ®, Ansin (o \/ At + arctan|.} Cc" + 1

I—Cp p
The 2-dimensional, discrete time, white Gaussian noise process w,(#) has mean and covariance
statistics:

E{w’d(t,) =0

ha (3'44)
Ew, (t)wh(t) = Q,, = fCDP(tM--t)GPQp T, -vdr

4

The individual components of Q,, are not included here due to their length and comaplexity. The

interested reader is referred to the software [30] for a full description.

The 2-dimensional pogo state vector defines the position of the plume image intensity
centroid relative to the equilibrium point of oscillation, and its velocity component due to the pogo
phenomenon along the longitudiual axis of the missile. For the simulation, it is assumed that the
velocity vector lies coincident with the longitudinal axis of the hardbody. As shown in Figure 1.6,
the plume oscillates about an equilibrium point also located on the longitudinal axis. This
equilibrium point is defined by the initial positions of the two intensity functions in the target
coordinate frame (to be discussed in Section 3.3.1), and remains at a constant distance from the

hardbody center-of-mass throughout the simulation (the spatial relationship of the intensity
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functions can be seen in Figure 3.3 in Section 3.3.1). The crescent-shaped plume represents one
of many equal-intensity contour lines of the actual plume. The angle of attack and sideslip angle

of the missile are also assumed negligible, and have zero values for the cirmulation (40].

3.3 Measurement Models

A major factor in formulating an authentic simulation is creating realistic measurements
for the Kalman filter state estimate updates. The measurements generated in a simulation are
based on prior knowledge and/or physical insight into the characteristics of the sensor devices.
This knowledge not only includes what the measurement properties themselves should be for the
chosen scenario (i.e. dependent on the current state of the truth and filter model), but also any
imperfections that would exist due to background noises in the environment and the measurement
devices themselves. Two types of measurements are provided to the linear Kalman filter in this

simulation.

The first type are the "pseudo-measurements” generated by the enhanced correlation
algorithm from the raw FLIR data [41]. These two measurements describe the position of the
intensity centroid after undergoing changes due to dynamics, atmospheric jitter, bending/vibration
and pogo oscillations. In the rruth model, the image intensity function is corrupted with two types
of measurement noise before beig processed by the enhanced correlation algorithm -- spatially
correlated noise from the target background, and spatially uncorrelated noise to simulate internal

FLIR sensor noises.

The second type of measurement fed to the filter is from the low energy laser (LEL).

This measurement is obtained by scanning the LEL relative to the plume centroid and recording
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any backscatter that may (or may not) result from intercepting the hardbody. Since the Kalman
filter may utilize the magnitude of speckle return, the Doppler freqnuency spectra attributes, or
both, the generated LEL measurement must emulate all those properties. For this research, only
the Doppler measurement model was used. The objective in this simuiation was rot to recreate
the physical processes of the laser speckle (or Doppler) return itself, but to imitate and provide
the expected quality of measurements based on those processes, the chosen scenario, and the
various scan techniques employed. Noises to account for imperfections and device limitations are

also modeled in the LEL measurements.

The following subsections describe how the measurements were generated for this
simulation. A full description of the FLIR model is included as well as how LEL reflections from
the plume and hardbody are modeled. In addition, a brief review of the Doppler eiicct is included
to assist in understanding the section on how Doppler measurements are modeled. As with the
truth dynamics model, the measurement model was not revised from the last thesis, so the
following descriptions were transcribed from Herrera's thesis [14] with modifications made to

ensure the information is germane to this thesis.

3.3.1 FLIR Model. The FLIR sensor model is composed of an 8 x 8 pixel array “tracking
window" extracted from the total array of 300 x 500 pixels. The missile plume is projected onto
the FLIR focal plane, with its characteristic crescent-shaped intensity function formed as the
difference of two bivariate Gaussian intensity functions, as shown in Figure 3.3. This model
depends upon knowledge of several parameters: the size of the major and minor axes of the
elliptical contours of each bivariate Gaussian function, and the orientation of the principal axes

in the FLIR image plane (the major axis of each ellipse points along the velocity vector in the

321




‘S-S Pl === TargetPlume Formed by

Ve | " Subtrapting "Trailing” from

~ ‘Leading” Gaussian
Intensity Function

.................................................

« - P Plane (FLIR)

Figure 3.3 Composite Plume Intensity Function on FLIR Plane
FLIR plane). The target intensity function obtained from evaluating the resulting intensity
function is cormupted by spatially correlated and temporally uncorrelated background noise and
spatiaily and temporally uncorrelated internal FLIR noise, according to models of actual data taken

from a FLIR sensor looking at various backgrounds [33].

For cach pixel in the FLIR FOV (the 8 x 8 array "tracking window"), the target’s intensity
function, correlated background noise, and FLIR internal noise are added together to produce an
intensity measurement. For the 8 rows and 8 columns of the FOV, the intensity measurement

cor: -ponding to the pixel in the j® r-v and k* column at sampling time , is given by:
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where

Zu(1)
A

P

11, 12

X,y

xpeakl 1 ypm.kl
xpmﬂ' ypaau
ny(t)

bu(t)

1
z,(4) = T.LW {1,[xy, X peat 185 Ypaars(t))
e

(3-45)
~L[0,Y, % 15 a1 Nk ly

+ L) + b(e)

output of pixel in the j* row and k* column

area of one pixel

intensity function of first and second Gaussian intensity function
respectively of Figure 3.3

coordinates of any point within pixel jk

coordinates of maximum point of first Gaussian intensity function
coordinates of maximum point of second Gaussian intensity function
effect of internal FLIR sensor noise on jk ™ pixel

effect of spatially correlated background noise on jk * pixel

The sensor error, n,(#), is the result of thermal noise and dark current in the IR detectors (pixels).

This error is assumed to be both temporally and spatially uncorrelated [40).

The background noise, b,(7,), was observed in the FLIR data by AFWL personnel during

a tracking operation [13]. It is represented as a spatially correlated noise with radial symmetry,

with a correlation that decays exponentially. Harnly and Jensen [13] concluded that spatial

correlation can be depicted as a correlation distance of approximately two pixels in the FLIR

plane, and simulated this by maintaining non-zero correlation coefficients between each pixel and

its two closest neighbors symmetrically in all directions. In that two-pixel distance, the correlation

decays exponentially to one-tenth of its peak value.
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The generation of spatially correlated white Gaussian noises is accomplished by allcwing
non-zero cross correlations between the measurement noises, b,(1,), associated with each of the

64 pixels froru the 8 x 8 pixel FLIR FOV. The correlaied measurement noise in Equation (3-45)

is given as:

b(t) = 64-dimensional vector of spatially correlated noise with statistics:

E{b(s)} = 9 3.46
E(B(1)b7(¢)} = R, -40)

where R is & 64 x 64 measurement noise covariance matrix. This matrix describes the spatial
correlation between pixels, and is given by [13]:

B

Na Na Ties
Fys 1 Fa e Tyga

o2 (3-47)
R = o} fyy T 1 .. Fyes
_r64,1 r64,2 r64.3 b l i

where o’ is the variance of each scalar noise and the correlation coefficients r,, are evaluated to
reflect the radially symmetric, exponentially decaying pattern. The spatially correlated background

noise b(t,) is simulated as:

b(fl) - wb/(t/) (3-43)

where

<
I

Cholesky square root

b() 64-dimensional vector of readily simulated discrete, independent white

Gaussian noise with statistics:

/ =
E{b/(r’:;{z‘;l,"((t;))} - 25 4
i (AT}
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3.2.2 Low-Fnergy Laser Speckle Reflection Model. The low-energy speckie reflection
model evolved through the work accomplished by Eden and Evans [8,9]. The model makes no
attempt to simulate the datuiled physical phenomena associated with the speckle return of the
reflected laser trom the plume or hardbody. Rather, the mouel simulates the reflectivity
information from the hardbody speckle return which would be derived by speckle detection

circuitry.

The low-energy laser speckle reflection model simulates a linear measurement o the
Kalman filter for estimaving the offset distance from ihe plume intensity centroid to the hardbocCy
center-of-mass along the vehicle’s FLIR image plane velocity vector. The first attempt to model
the laser speckle return consisted of the hardbody represented as a rectangle with a binary-valued
reflectivity function, which provided a binary indication of the hardbody whenever successful
interception by the laser beam occurred [8]. With this model, speckle reflection information was
equally obtained over the entire vehicle. This was followed by an enhanced, 3-dimensional,
reflectivity model which accounted for the realistic distribution of the laser speckle return
according to the curvature and aspect angle of the hardbody [9). The 3-dimensional model is
employed for this research since the Doppler return is also a function of reflectivity [14,43,44,50].
The following subsections discuss the development of Evans' 3-dimensional hardbody reflectivity

model and introduce the plume reflectance model.

3.32.1 The Hardbody Reflectivity Model. The 3-dimensional reflectivity model was
developed by Evans [9] based upon his analysis of empirical data obtained from the 6585" Test
Group, Holloman AFB, New Mexico [10]. The data illustrates the return power (expressed in

decibels-square meters) as a function of radar cross section (RCS) from a 20 x 249 inch cylinder
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with hemispherical endcaps &s it was rotated longitudinally in the planc of the radar source. (R.CS
is defined as the projected arca of a metal sphere which would return the same echo signal as the
target, had the sphere been substituted for the target [43].) The data showed peak values at 90°
and 270°, where the cylinder was orthogonal to the line of sight, and sharp dropoffs in reflection
as the angle deviated from the orthogonal condition. The reflectivity model, shown relative to the
FLIR image plane in Figure 3.4, modifies the previous rectanguler model to include 29 discrate-
weighted line segments along the length of the model. Two functions define the hardbody

reflectivity model: the cross-sectional function and the longitudinal function.

Each discrete-weighted line represents a cross-sectional reflectivity function which
duplicates the empirical data from Holloman, The reflectivity function models the curvature by
defining the strength of the reflected signal at each discrete line, where the amplitude of the
reflected signol is highest along the missile centerline and discretely tapers towards the hardbody
sides in 0.1 meter increments. The discrete implemenitation of the cross-sectional reflectivity
function for the simulation is shown in Figure 3.5. Note the peak reflection of the cross-sectional
reflectivity function’s center is represented by an arbitrary value of 50 units of reflection
magnitude [9]. The remaining line segments are scaled accordingly to match the empirical data.
The reflectivity function also yields zero reflection for thosc portions of the original rectangle far
from the missile centerline, so the effective reflective area of the hardbody is less than that of the

binary model.

The angle v, defined as the angle between the inertial velocity vector and the FLIR plane,
is utilized by the longitudinal reflectivity function to provide a scaling factor of the total reflection

function if the missile centerline is oriented other than normal to the FLIR plane. Similar to the
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Figure 3.4 3-d Hardbody Reflectivity Model Relative to FLIR Image Plane

cross-sectional reflectivity function, the longitudinal function assigns a scaling factor i0 the

reflected signal based upon the angular aspect of tb< target velocity.

Another factor in determining the received speckle reflection is the sensitivity level of the
low-energy laser sensor. This sensitivity is represented ip the simulation as a threshold limit
below which the low-energy laser sensor cannot detect the reflection return. To illustrate the
function of the sensor sensitivity factor, consider the hardbody at an aspect angle vy reiative to the
FLIR image plane. In this orientation, the maximum amount of reflection is obtained in the
simulation by multiplying the peak reflection value (50 units of magnitude) by an appropriate

scaling factor [9]. The sensitivity threshold function p(-) is defined as a function of a threshold
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Figure 3.5 Discrete Implementation of Cross-Sectional Reflectivity Function [9]

reflection magnitude m,. If a reflection (-) is less than m,, the reflective output is clipped to zero
(see defining equation for yu(-) in the next paragraph). Therefore, p(+) represents the sensor’s

ability to discern a target’s return signal [9].

The total reflectivity function is given by [9]:

R, = Y ulAF(y; (3-50)
{el
where
R; = otal reflectivity received by the low energy sensor
n = number of line segments crossed by laser scan

n(+) = sensitivity threshold function of low-energy sensor:
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m_if m 2 threshold

M) =10 it m < threshold

A, = cross-sectional reflectivity functica reflection amplitude of the i* discrete
line segment
F(y) = longitudinal reflectivity function, where y is the angle between target v and
the a-p plane
As the hardbody iraverses along its trajectory in 3-dimensional inertial space, the
projection of its motion onto the 2-dimeasional FLIR image plane generates the comresponding
propagation of the first two states in the truth model. Similarly, to simulate the center-of-mass
measurements in terms of FLIR plan2 variables, the hardbody model is also projected onto the 2-
dimensional FLIR plane. Referring to Figure 3.6, the geometry for projection is described by:
ML, = ML, cosy (3-51)
where

MLy, = FLIR plane projection of missile length
ML,.. = true missile length in pixels
Y angle between v, (velocity vector of the target) and the FLIR plane

Similarly, since the hardbody longitudinal axis is assumed to be aligned with the velocity vector
(along which the offset is aligned), the offset between the hardbody and the plume is scaled by
the same factor when projected onto the FLIR plane. Since the missile is cylindrical, the
projection of the missile diameter onto the FLIR plane is equal to its diameter. Once the
projection is accomplished, the hardbody is located on the FLIR plane by offsetting the
hardbody’s center (midway between the projected endpoints) from the truth model intensity

cenwoid along the truth moedel velocity vector by [(Offser distance,,,,,)cosyl.
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Figure 3.6 Projection Geometry onto FLIR Image Plane

The subtended arc of the low-power laser beam is simulated as a rectangle with the
smaller side represented as the finite width of a dithered laser beam after it has traveled 2000
kilometers. Shown in Figure 3.7 are the ideal conditions for the laser scan. (Generally, the filter
estimates of the intensity centroid position, the orientation angle, and the velocity vector are not
equal to the truth model values.) One end of the long centerline of laser scan rectangle is lecated
at the estimated intensity centroid, positioned at the center of the FLIR FOV. The other end of
the laser scan rectangle is taken as three times the truth model offset distance between the
intensity centroid and the hardbody center-of-mass (3 x 87.5 = 262.5 meters or 8.75 pixels) to

ensure the laser scan is iong enough to intercept the hardbody, despite the cffects of "pogo”. The
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Figure 3.7 Ideal Low-Energy Laser Scan
seco. ndpoint of the laser rectangle along its centerline is given as:
x, = x, + Lcos,
r (3-52)
Y, =y - Lsinef
where
X, y, = the FLIR plaue coordinates of the second end of the centerline of the laser
rectangle
x,, y. = the FLIR plane intensity centroid coordinates
L = length of the laser rectangle
B, = six-state (FLIR) filter estimate of velocity orientation angle
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As mentioned earlier, the FLIR filter's imprecise centering of the inten  centroid caused
inadequate hardbody illumination rates by the laser scan in the original research by Exlen {8].
(The estimated velocity vector, and thus the estimated orientation angle, 6,, were estimated
precisely, however.) As a result, an ad hoc sweep routine was developed, shown in figure 3.8,
that - ffsets the initial laser scan clockwise from the estimated velocity vector. The laser scans are
swept counterciockwise in order to assure illumination of the entire body. Evans found that,

without pogo, a 30° offset was required, and 35° with pogo applied [9].

3.3.2.2 Plume Reflectance Model. Prior to Herrera’s research, the concept of illuminating

the missile hardbody with a low-energy laser and analyzing the speckle return (also called
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backscatter radiation) was predicated upon ‘' assumption that the missile plume would not
possess any backscatter propertics or possess a speckle return similar to the hardbody's, when
illuminated by a low-energy laser [14]. The laser scan travels along the intensity centroid’s
velocity vector until a speckle return is receive.  .gnifying the start of the metallic hardbody.
The scan continues along the hardbody until no backscatter exists, signaling the end of the
hardbody, and thus information is provided to calculate the center-of-mass, However,
experimental data confirr ed the presence of plume reflectance from solid-propellant rocket motors

[2,34] which significantly alters the previous corception.

Experimental programs at the Arnold Engineering and Development Center (AEDC), in
Tennessee, have observed and measured laser backscatter radiation from the exhaust plume of a
solid-propellant rocket motoi [34]. The measurements of the plume’s backscatter radiation were
found to be on the sarne order of magnitude and comparable to that of a hardbedy [2], due to
aluminum particles and otner substances in the plume. During the STARLAB flight experiment,
which collected plume data under actual flight conditions, a rocket booster and its exhaust plume
were "painted" by a low energy laser. Video recordings of the flight experiment showed the
randomized appearance and low-frequency oscillation of the plume’s reflectance [2,3]). The
existence of plume reflectance creates an ambiguity that impedes the precision tracking necessary
to define the plume/hardbody interface. The plume reflectance causes a bias in the estimated

hardbody location, biased longitudinally toward the plume.

Since for this thesis, the Doppler measurement model was utilized instead of speckle, the
offset measurements from the LEL were assumed to be unbiased (see the next section). However,

this section has been included in the thesis description for continuity and, since the bias effect is
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still implemented in the software if the speckle return model is used, it is retained as reference for

future researchers.

The purpose of the plume reflectance mode! ‘s to simuiate the presence of plume
backscatter radiation and its effect upon the offset measurcinent. Figure 3.9 depicts the reflectance
from both the plume and hardbody, as observed in the STARLAB flight experiment. From the
viewpoint of the speckle return sensor, the plume reflectance has the effect of elongating the
apparent missile hardbody in the direction of the plume. The plume reflectance model simulates

the hardbody elongation by applying a bias to the offset measurement in the direction of the

Hardbody
/o Reflectance

Hardbody
/ P Center-of-Mass

\—~~ Bias Caused by
Plunie Reflectance

\. . Plume Reflectance of
Solid-Propellant

Exhaust Plume - Rocket Motor

Figure 3.9 Biased Offset Measurement Caused by Plume Reflectance
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elongation, defined as in the opposite direction of the estimated velocity vector. In the sitnulation,
the model first receives the offset measurement as determined by the low-energy speckle reflection
model. The biased measurement, X gm0, is formed by converting the bias into pixels, projecting
it onto the FLIR plane, and subtracting it from the original ofiset measurement. The biased offset

measurement is then provided to the filter for its update, The plume reflectance model is given

by:
- _l b (3-53)
Xopsetvias = Xogper [T?I;] cosy
where
X.mewias = biased offset measurement due to plume speckle reflectance
Ko = offset measurement from the low-energy reflectivity model, without plume
speckle reflectance effect
b = Dbias value
R = range
k, = pixel proportionality constant (15 prads/pixel)

y = angle between 3-dimensional inertial space velocity vector and the FLIR
image plane

The randomized nature of the plume’s reflectance is modeled as a percentage of iime that
appearance of the bias occurs. A random number generator, of uniform density output, provides
the logic to turn the bias "on and off" according to the percentage selected. In correspondence
with Phillips Laboratory personnel, a bias of approximately 25-30 meters with an appearance

percentage of 90 - 95% was observed during the STARLAB flight experiment [3].

3.3.3 The Doppler Measurement Model. 'The Doppler measurement model simulates the
offset measurements that are obtained by expioiting the differences between hardbody and plume-

induced Doppler returns. As with the laser speckle return research of Eden and Evans, the
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modeling of the actual physical properties of the Doppler phenomenon will not be attempted.
Instead, modeling efforts will entail simulating the information that would be available from
Doppler detection circuits as measurement data for the Kalman filter. The following subsections
briefly introduce and describe the basic concepts of the Deppler phenomenon, as applicable to the
properties of the hardbody and plume-ir duced Doppler returns. The treatment of the Doppler
phenomenon is not intended to be rigorous and reflects the level of understanding necessary to
appreciate the manner with which the Doppler returns are employed to generate an oifset
measurement relative to the intensity centroid. For a rigorous development of the Doppler
phenomenon, the interested reader is referred to Principles and Practice of Laser-Doppler
Anemometry by Durst, F., A, Melling, and J. H. Whitelaw [7], and The Doppler Effect by Gill,

T. P. [12].

3.3.3.1 The Doppler Effect. Many define the Dopnier effect as a shift in the frequency
of a wave radiated, reflected, or received by an object in moti »n [43,44]. From a radar, Doppler
shifts are produ::ed by the relative motion between the radar and the target. The radar may be a
pulsed, coherent laser beam that propagates the electromagneti:: energy to "paint” the target of
interest. If the target is in motion and illuminated by a low-energy laser, the returned signal (or
backscatter) is represented as a time-delayed, Doppler-shifted version of the transmitted signal,
wherein the amount Doppler shift is proportional to the reflecting target’s range rate relative to
the laser transmitter [43,44]. A continuous transmitted signal is given as:
E, = E cos(2nf,D) (3-54)
For this wansmitted signai, the echo signal from a moving target will be [43]:
E, = kE cos[2n(f, + f,)t+$] (3-55)

where
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E, = amplitude of transmitted signal

= reflected signal

k = an attenuation constant that represents losses incurred during propagation
f; = Doppler frequency shift

= transmitted frequency

¢ = a phase shift, dependent upon the range of detection

Figure 3.10 shows the frequency spectrum of the echo signal, shifted from the transmitted
frequency, f,, by the Doppler shift, f, given by [43]:

tf, = L2/ (3-56)
A ¢

where

relative velocity of target with respect to transmitter

<
L]

>
"

transmitted wavelength
velocity of propagation (3 x 10* m/s)

a
]

The relative velocity, v,, is expressed as:

v = v siny (3-57)

r

where

target velocity in 3-dimensional inertial space

<
[}

angle between the target trajectory and plane perpendicular
to the laser LOS (i.e., FLIR plane); see Figure 3.6

-2
n

The plus sign associated with the Doppler frequency shift applies if the distance between target
and ransmitter is decreasing (approaching target), and conversely, the minus sign applies if the

distance is increasing (receding target).
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Figure 3.10 Spectra of Received Signals [43]

As shown in Figure 3.10, the frequency spectrum of a continuous reflected sipusoidal
signal appears as a straight vertical line. The scenario proposed by the Phillips Laboratory calls
for a pulsed and coherent laser beam to illuminate a ballistic boosting target [3]. Both these laser

properties have an impact upon the nature of the returned spectrum.

For illustration purposcs, Figure 3.11 shows a train of independent pulses having a pulse
width (PW) of 0.001 seconds and a constant pulse repetition frequency (PRF), along with its
associated frequency spectrum. Because the pulses are "on" a fraction of the time, the amplitude
of the frequency spectrum decreases but is still centered at f,. The total power is in fact

distributed over a band of frequencies extending from 1000 Hz below f, to 1000 Hz above it, for
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a null-to-oull bandwidth of 2 KHz. The bandwidth (i.e. spectrun. spread), is inversely

proportional to the pulse width and is given by [44]:

Bw « 2 (3-58)
T

where

BW,, = null-to-null bandwidth
pulse width (sec)

T

By coherence is meant a consistency, or continuity, in the phase of a signal from one
pulse to the next [44]. The term ¢ in Equation (3-55) represents the phase shift which is a
function of the range during detection. Figure 3.12 illustrates the difference between the
frequency spectrum of a coherent signal and a non-coherent signal. With non-coherent
transmission, the signal’s central spectrai lobe is spread over a band of frequencies. In contrast,
the spectrum associated with coherent transmission shows the signal appearing at many points.
Its spectrum, in fact, consists of a series of evenly spaced lines, wherein the interval between the
spectral lines equals (1/PRF) [44]. Further comparison reveals that the coherent frequency
spectrum is stronger (having a higher amplitude) than the non-coherent signal because the energy
has been concentrated iinto a few narrow lines. 1. addition, the envelope within which these lines
fit has the same shape ([sinx]/x]) and the same null-to-null BW (2/7) as the spectrum of the non-

coherent signal.

3.3.3.2 Hardbody Doppler Return. At a range of 2000 kilometers, the missilc hardbody
can be defined as a smooth, dense single point target. Any rotational motion of the hardbody
about its longitudinal axis is assumed much less than the hardbody’s velocity, and is considered

negligible. It is further assumed that the target hardbody’s velocity remains constant over the
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Figure 3.11 Pulsed Signal Frequency Spectrum [44]

duration of a transmitted pulse. With such & target, the spectrum of the return will have a
bandwidth that closely approximates (2/7), and centered about the Doppler-shifted frequency

corresponding to the range rate.

3.3.3.3 Plume Doppler Return. The case of the exhaust plume can be represented as the
situation in which numerous point targets are imaged. The plume can be described as a randomly
distributed array of point targets which are dispersed in range and velocity. The plume
particulates are small (submicron in size), nonspherical and nonhomogeneous, and their size and
spatial distribution vary strongly with the radial distance from the plume axis [14,51]. Typically,

larger particles are concentrated near the plume’s symmetry axis, and in contrast to the hardbody,
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Figure 3.12 Spectra of Coherent and Non-Coherent Pulsed Signals [44]

the numerous exhaust plume particles exhibit numerous velocity orientations over the duration of

a laser pulse.

When the laser beam illuminates an infinite aumber of point taryets, the superposition of
each particle’s backscatter radiation within the iaser beamwidth will form the resultant return
[50,51]. Thus. the Doppler frequency spectrum will be quite broad, due to the numerous Doppler
shifts of the numerous plume particulate velocities [3,14]. This Doppler spreading of spectral
lines arises from the fact that backscaiter from a particulate will be shifted in frequency in a
manner depending on the approach or recession of the particulate. The plume experimental

programs at AEDC have observed and measured plume Doppler reflectance frequency spectrums
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Figure 3.13 Spectra of Plume and Hardbody-Inducec Doppler Returns

with null-to-null BWs of 2 - 5 GHz [32]. This sharply contrasts the hardbody-induced return

whose spectrum null-to-nuli BW equals 2/t, with an order of magnitude in MHz. However, one

other significant difference exists between the hardbody and plume-induced Doppler returns.

Generally, the velocity of the plume will be oriented 180 degrees from the hardbody’s

velocity [3,14]. This is showr in Figure 3.13(a), where the respective Doppler frequency shifts

will always be opposite in sig\. A majurity of the observed plume particles would have a relative

radial velocity towards the tracker and the resultsni return would have a negative Doppler

frequency shift. Conversely, the hardbody as shown is receding from the tracker and will thus

exhibit a positive Doppler frequency shift. Hence, by exploiting the two differences in plume and
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hardbody-induced Doppler returns, precise tracking and definition of the plume/hardbody interface

can be realized.

However, the angle v, of which the relative velocity v, is a function, has an impact upor
the discernability between the plume and the hardbody-induced Doppler shifts. Referring to
Equation (3-57), as y approaches 0°, where the plunie and hardbody velocity vectors become
orthogonal to the LOS vector, the radial velocity relative to the tracker approaches nil and no
Doppler shift is produced. Figure 3.13(b) shows that, under these circumstances, the return
apectra of the plume and hardbody converge towards the transmitted frequency and eventually
overlap, obscuring most of the hardbody-induced Doppler return. This imperfect ability to detect
the hardbody spectrum, as distinct from the plume spectrum, will be addressed in the next section

which develops the Doppler measurement model.

The measurement modeling approach teken by this thesis is tc consider the Doppler retuin
of the hardbody significantly distinctive from that of the plume. The Doppler detector must be
designed to filter out the broader plume retwn and only pass the hardbody return, a function
achievable with a Doppler matched filter design [14,43]. This vital concept signifies tkat the
Doppler truth measurement model can neglect the plume’s Doppler return and solely simulate the
hardbody-induced Doppler return. Although there may be instances of no apparent distinction
between the plume and hardbody spactra, these occurrences will be embodied in a probability-of-

miss parameter (P,,), to be discussed later.

Since Doppler informatioa is obtainable from backscatter radiation, which includes the
speckle return [43,44], the 3-d hardbody reflectivity model is utilized in this modeling approach.

However, in contrast to the laser speckle returu measurement model, the biasing effect caused by
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the plume’s reflectance is no longer applicable and is not incorporated into the Doppler
measurement model. As a result, the center-of-mass measurement and offset measurement
generated by the Doppler measurement medel will simulate the true offset measurement, x,4,,,, for

the filter.

3.3.3.4 Doppler Measurement Noises. According to Herrera, in a study sponsored by
the Phillips Laberatory, Dr. Paul McManamon investigated feasible and implementable
wavelengths to illuminate the plume and hardbody, while meeting the space tracking scenario
requirements [14]. His choice of wavelengths, based upon ranges, power requirements, hardbody
temperatures, and tracking accuracies, raage from .53 to 15 pm. For this study, the shortest
wavelength 0.53 pm was selected for use in sensitivity analysis. The tracking inaccuracies
associated with this wavelength is adopted in the Doppler measurement modcl to corrupt the offset

measurements realistically.

The tracking accuracy for & laser beam is a function of the amount of power, or
amplitude, of the return signal. The return signal, in turn, is dependent upon several variables,
among which are the target’s radar cross section (RCS) and the location of the target in the laser
beam [14,43,44]. A target ideally located in the center of the laser beam reflects the maximum
return signal (i.e., optimum signal-to-noise ratio, SNR). If the target falls off to the side of the
beam’s center, then less encrgy hits the target. The degree of tracking accuracy then becomes a

question of, how far off to the side can a target be to reflect the signal at an acceptable level?
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Dr. McManamon addressed this issue [14] by first defining the acceptable beam diffraction

limit as the angle within the 3 db power points of the laser beam. He defines the diffraction limit

as:

e&)ﬂ

- 1082 (3-59)
d

where

0,,, = half angle defined from beam center to half-power points, in radians
A
d

wavelength, in meters

radar aperture, in meters

One then determines the acceptable level of signal loss within the ©,, limits. In Dr.
McManamon’s assessment, a 10% loss can be tolerated, and he determined that this loss is

reflected by decreasing the diffraction limit by a factor of 2,667 [14]. Equation (3-59) yields:

0
9, = % (3-60)
b 72667

where

0, = allowed diffraction limit for 10% signal loss

The measurement noise for the Doppler measurement model thus consists of the tracking
angle errors, in pixels, as a function of the diffraction limited beam and acceptable signal-to-noise
ratio (SNR). Inasmuch as SNR is a design parameter, Herrera’s study [14] included the following

values of SNR for the sensitivity analysis: 10, 8, 6, and 4. The relationship is given as [14]:

0
0, = —>2 ! (3-61)
3/SFR £,
where
0, = rms tracking angle errors in pixels
0, = Dbeam diffraction limit
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SNR = signal-to-noise ratio

k, = pixel proportionality constant, 15 prads/pixel

In addition to providing the offset measurement, the Doppler measurement model also
simulates a return signal probability-of-miss, P,. The probability-of-miss encompasses two cases.
First, the probability-of-miss takes into account the situation in which the hardbody is illuminated
by the low-energy laser, but the return is not detected due to attenuation of the returning signal
as it propagates the 2000 kilometer range, beam-bending as a result of atmospheric distortions (the
intended location of the laser scan should have illuminated the target, but bending of the beam
resulted in no intersection with the target); or due to signal losses (i.e., high sensor sensitivity
threshold; refer to Section 3.3.2.1) within the receiving equipment. In this case, a loss of speckle
information would also result. Secondly, in Equation (3-51), it was shown that the relative
velocity is a function of vy, such that no Doppler shift occurs if the target’s velocity is normal to
the transmitter’s LOS. Hence, as shown in Figure 3.13, as vy approaches 0°, both the broadened
plume-induced Doppler spectrum and hardbody-induced spectrum will converge and overlap. The
two spectra will become more indistinguishable, perhaps rendering detection of the hardbody’s

Doppler return impossible.

The simulation of the probability-of-miss is similar to the technique employed by the
plume reflectance model. A random number generator, with a uniformly distributed output, also
provides the logic to turn the hardbody laser backscatter "on and off." Figure 3.14 shows the
detection characteristic for a known signal. The graph present a set of parametric curves that give
the probability-of-detection, P,, as functions of peak signal-to-noise ratio (SNR) for various values
of probability-of-false alarm, P,. 2, is defined as falsely indicating the presence of a return signal

when none exists [43]. Both P, end P, are specified by the system requirements; the radar
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designer computes the probability-of-false alarm and, from Figure 3,14, determines the minimuin
detectable signal. A range of 70 - 99 percent probability-of-detection is representative of current

Doppler detection equipment capabilities with the tracking scenario [14].
3.4 Truth Model Parameters

The discussions in the previous sections introduced some of the truth model parameters
used in the simulation. The purpose of this section is to provide a consolidated listing of the

parameters and initial conditions of the truth model.

3.4.1 Target Trajectory Initial Conditions. The initial conditions of the target inertial

nosition, velocity, and velocity vector orientation angle, 6, are as follows:

e, = 27,00V meters

e, = 100,000 meters
e, = 2,000,000 meters
v, = -2500 meters/sec
v, = 4330 meters/sec

v, = 0 meters/sec
6 = 60°

342 Target Model, Dimensions, and Orientation. The target plume consists of a
crescent-shaped intensity function formed from the difference of two bivariate Gaussian intensity
functions. Each Gaussian function is modeled with elliptical constant-intensity loci with an aspect
ratio of 1.5, and a semi-minor axis of one. For this thesis, Evans’ 3-dimensional reflectivity
model is used to model the hardbody. The hardbody length is 40 meters (1.33 pixels) and 3
meters (0.1 pixels) wide. The offsc distance of the hardbody center-of-mass from the intensity

centroid is 87.5 meters (2.92 pixels), a carryover from the previous thesis. For the simulation. e
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intensity centroid and the hardbody longitudinal axis are aligned with the velocity vector, and the

hardbody has zero sideslip and zero angle-of-attack.

34.3 Intensity Functions. The two Gaussian bivariate intensity functions, shown in
Figure 3.3, are certered at 65 and 110 meters behind the missile. Each intensity function has a

maximum intensity value of 20 intensity units.

3.4.4 Amnospheric Jitter. The variance and mean squased value for the atmospheric jitter

in both FLIR directions is 0.2 pixels®.

345 Bending/Vibration. From Equation (3-29), the values for the second-o'.'er

bending/vibration model are as follows:

K} = 5x 10" rad/sec’
G, = 015
o, = Trad/sec

3.4.6 Plume Pogo Characteristics. The size of the plume is on the order of 30 times the
diameter of the missile at the altitudes of interest. The values below represent values of pogo

oscillation as determined in previous research [40].

0.1 - 10 Hz (nominal is 1 Hz)

0.0112 - 1.120 pixels (nominal is 0.112
pixels)

pogo oscillation

pogo rms

For this research, the elemental filter in the AFIT software was tested against nominal conditions.

3.4.7 Spatially Correlated Background Noise. The rms value of v,, the summed effect
of the spatially correlated background noise b, and the FLIR sensor noise n,,, of Equation (3-45),

equals one. This produces a SNR of 20.
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3.4.8 Low-Energy Laser Speckle Return Measurement Dimensions. The low-energy scan
Is represented as a rectangle at the hardbody target. The scan iength is 262.5 meters (8.75 pixels),
which is three timcs the true model center-of-mass offset distance, and the scan width is 0.1
meters. The measurement noise associated with the speckle return was obtained by taking 1% of

the hardbody’s length, and converting to pixels, giving a variance of 0.000178 pixels® [9).

3.4.9 lume Reflectance Model. From correspondence with Phillips Laboratory personnel
[3], the bias utilized by the plume reflectance model is approximately 25 - 30 meters and appears
90 - 95% while the plume is illuminated during the boost phase. ['or the simulation, nominal

values for the bias and rate of appearance are set at 25 meters and 90%, respectively.

3.4.10 Low-Energy Doppler Return Measurement Dimensions. The Doppler measurement
noise rms tracking errors are functions of wavelength, radar aperture, and SNR. The previous
thesis siudied filter performance dependent upon the wavelength values of .53pm, 1.06 pi,
2.01pm, 4pm, 6pm, 8pm, and 10.5pm, with SNR values of 10, 8, 6, and 4, and probability-of-miss
P,, values of 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.20, and 0.30. Since the purpose of this
thesis was to incorporat;e pogo into the filter, the filter was given the: benefit of the best possible
Doppler measurements throughout the simulation. Therefore the conditions were set for a
wavelength of .53um, a SNR of 10 and a P,, value of 0.01. The radar aperture d of Equation (3-

59) of .5 meters was carried over from the previous thesis.

3.4.11 Hardbody Reflectivity Measurement Model. The function p(-), in Equation (3-50),
represents the sensitivity threshold of the low-energy laser return sensor. The threshold must be
less than the magnitude of reflection, m, (scaled according to the aspect angle ), to detect the

return from the hardbody. In the simulation, the value of the threshold is set to 0.0. This was
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to allow recepiion of measurements if any backscatter was received at all (perfect LEL receiving

equipment).
3.5 Summary

This chapter presented the mathematical equations used to model the true environment.
The truth model contains 14 states describing translational motion of the centroid in the FLIR
plane due to target dynamics, atmospheric disturbances, bending/vibration of the platform and
optics, and the pogo cffect of the plume. The truth system is implemented in the AFIT software
using the discrete-time dynamics/discrete-time measurement models presented in Section 3.2, and

the continuous dynamics eyuations are utilized in the MSOFE simulations.

Section 3.3 delineated how the measurements are generated for the tracking scenario. The
raw FLIR measurements are simulated by creating a composite plume intensity function on the
64-pixel array (the FOV) and then corrupting it with noise, The array data is then processed
through the enhanced correlation algorithm to produce translational offsets of the centroid for the
linear Kalman filter update. This section also outlined how the 3-dimensional missile hardbody
is projected onto the FLIR plane and how the reflectivity function is determined based on scenario
geometry. Finally, the use of the laser backscatter to formulate the Doppler measurement is also
depicted. The same reflectivity model is used, but measurements are corrupted with rms angle
tracking errors associated with a specific wavelength, radar aperture, ard SNR, and there is no

bias as there was in the speckle return measurements.
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1V. Filter Models

4.1 Introduction

This chapter presents the filter dynamics and measurement models used for this thesis.
All the structures described are reduced-order, simplified versions of the truth model. The
dynamics model is separated into individual dynamics models for target dynamics, atmospheric
disturbances affecting the plume intensity centroid location on the FLIR plane, and pogo affecting
oscillation of the intensity centroid relative to the hardbody center-of-mass. Since the plant matrix
(and corresponding discrete-time state transition matrix) and other matrices that form the models
are of a block-diagonal structure, the various filters used in the MSOFE and AFIT software
simulations can be assembled by including the portions associated with the desired states.
Chapters V and VI describe the states that each individual filter configuration includes. This
chapter also includes a description of the enhanced correlation algorithm which delivers "pseudo-

measurements" of image intensity centroid offsets in the FLIR plane to the linear Kalman filter.

Three items of import should be remembered while reading the chapter. First, the target
dynamics model for the filters differs from the truth model in that the deterministic driving input
is zero. The filter models have four target dynamics states, with the velocity states being modeled
as constaats, and thus the derivatives of these states are set to zero (plus pseudonoise for filter
tuning purposes). In contrast, there are only two position states in the truth model, driven by
known (simulated) constant velocity values. The second noteworthy item is that the MSOFE filter

models only incorporate FLIR measurements, and therefore do not deliver hardbody center-of-
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mass coordinates. Recall that the MSOFE simulations were only performed to gain insight into
observability difficulties, so none of thosc simplified models incorporate the centroid/center-of-
mass offset measarement, The third important item to remember is that the target dynamics states
of the AFIT filter model describe the hardbody center-of-mass, whereas target dynaniics states of
the truth model and MSOFE models (and previous AFIT FLIR filter models (8,9,14,31,40,41])
describe the plume intensity centroid., This difference from previous research is because there is
no separation of centroid location estimation and offset estimation, and all states have been
combined into a single filter. Therefore, there is no "FLIR filter" and "center-of-mass offset filter"

as in the previous three theses (8,9,14].

The AFIT software simulation filter model contains nine states (all four target dynamics
states, a two-state approximated atmospheric jitter model, two pogo states, and the offset state).
In the simulation, the filter performs an update based on the FLIR measurements. The updated
position of the estimated location ot the centroid is then used as the initial point of the laser
scanning routine. The laser is swept in relation to the updated velocity vector to obtain an offset
measurement via the Doppler return (as described in Section 3.3). The filter is then updated from

the LEL measurement and the state vector is estimated for the next sample period.

4.2 Dynamics Models

The elemental AFIT filter employed in this study is a single nine-state filter combining
the models that have been developed by AFIT students over thirteen years of research
[8,13,14,31,33,40,41]. The filter consists of two hardbody center-of-mass position states, two
hardbody velocity states, two atmospheric jitter position states (affecting centroid location in the

FLIR plane), two pogo oscillation states (affecting centroid location relative to hardbody), and a
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centroid/center-of-mass offset state. The observability study filters used varying combinations of

the following states:

» 4 or 6 target dynamics states (position, velocity, acceleration of centroid in x
and y directions)

» 2 or 6 atmospheric jitter centroid position states
» 2 pogo states (offset from centroid equilibrium point and velocity)

The state vector for the desired filter can be assembled by including the required states

from the following vector:

x=[xyv,vaaix,y,ixvizg] 4-1)

where

x, = xcomponent of target position (azimuth), relative to center of FOV *

¥, = ycomponent of target position (elevation), relative to center of FOV *

v, = xcomponent of target velocity *

v, = ycomponent of target velocity *

a, = xcomponent of centroid acceleration (if included in model)

a, = ycomponent of centroid acceleration (if included in model)

x, = x component of atmospheric jitter (1 or 3 states)

Y. = ycomponent of atmospheric jitter (1 or 3 states)

x, = offset (along velocity vector) of centroid from equilibrium point

v, = velocity (along velocity vector) of pogo oscillation

x, = offset between centroid equilibriuin point and center-of-mass

* Note: The target is considered to be the missile center-of-mass for the elemental filter; it’s the

centroid for all others.




Each state in Equation (4-1) is coordinatized in the a-p (FLIR) plane of Section 2.3.1.4.
For the observability gramian studies (the only models that included acceleration states) the target
acceleration is represented as an exponentially time-correlated first order Gauss-Markov process
[40). A comparison between the filter model presented here and the fourteen-state truth model
described earlier in Chapter III reveals the extent of state reduction. Note that the attnospheric
jitter model can be reduced from the six states defined in the truth model in Chapter III to two
states. The effect of the higher frequency double pole in each FLIR axis direction is negiigible
and is intentionally disregarded in the elemental filter to reduce the filter order [38]. Since the
full six-state jitter model is the same as the one employed for the truth model, the two state
approximated model will be presented here. Furthermore, the bending/vibration states defined in
Section 3.2.3 are similarly excluded since past research found no significant degradation in filter
performance without these states [17]. The pogo states defined in Section 3.2.4 are modeled
identically to the truth model with the exception of scaling noise strengths for tuning purposes.
Finally, the offset state was only included in the AFIT elemental filter, When it is included, the
definition of the target dynamics states (but not the mathematical dynamics model) changes from
centroid location to the center-of-mass location. As will be seen in Section 4.3, the measurement

model does change slightly with this alteration.

The filter model is described by the time-invariant, linear stochastic differential equation
[21]:

2 =Fx(@®) + Gw() (4-2)

where
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F = time-invariant system (plant) matrix
x(t) = n-dimensional filter state vector
G = nx m time-invariant noise distribution matrix
w(t) = m-dimensional, white Gaussian noise process with independent coraponents,
and mean and covariance kernel statistics:

Elw®} =0
Ewow™( + v} = 05(v)

(4-3)

The filter state estimate and error covariance matrix are propagated forward to the next

measurement update using the following discrete-time filter propagction equations [21]:

2 = PANLRC) “4)
P(1) = ®AHPEHDPTAY + @, 4-3)
where
£(1) = filter estimate of the n-dimensional state vector
$(At) = nx ntime-invariant state transition matrix for propagation over the sample
period: At =1, - ¢,
P(t) = nx nfilter covariance matrix
(1) = time instant before measurement is incorporated into the estimate at
time ¢
() = time instant after measurement is incorporated into the estimate at
time ¢,
Q. = m x m filter dynamics discrete noise covariance given by:

’ul
Q, - f B, -1)GRGD(t, ~1)d (4-6)
The components of Equations (4-2),(4-4) and (4-5) associated with each state are described in the
next four sections.
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4.2.1 Target Dynamics Model. Two scparate dynamics models were used in this research.
In the full six-state model the target acceleration is modeled as an exponeatially time-correlated
first order Gauss-Markov process. The acceleration model was not ever used in Monte Carlo
analysis for this research. Since it was only used for the stochastic observability gramian models,
and results were inconclusive (see Chapter V), it is not specified here. The model used for the
observability gramian analysis was identical to the one detailed in Rizzo’s thesis [40], so the

interested reader is referred there for a full description.

The MSOFE and elemenial filter models used a four-state model to describe target
dynamics. This model is represents the velociry states as random constants plus noise [21]. The

time-invariant continuous-time dynamics system matrix F, is given by:

[0010

0001 47
10000

0000 |

The noise distribution matrix G, is:

(4-8)

o - O O
-0 O ©

L. -

The strength of the white Gaussian noise w,, given by Q,, is:

B 10 (4-9)
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The time invariant target dynamics state transition matrix @, (A* is given by:

(104: 0
01 0 At (4-10)
001 OC
(00 0 1 |

P4 =

The filter dynamics discrete noise covariance Q,, is given by:

(a0 lae o ]
3 3
0 %.At’ 0 ._;.At’

Q, = | 4-11)

A 0 At 0
3
o lar o A

e 2 -

4.2.2 Atmospheric Disturbance Model. The atmospheric jitter model describes the motion
of the plume image in the FLIR plane due to atmospheric disturbances (refraction variations from
moisture, turbulence, thermal variation, etc.). The full six-state model developed by the Analytic
Sciences Corporation is introduced in Section 3.2.2. This section presents an approximated model
that implements a first-order Gauss Markov white noise process to simulate jitter along each FLIR
plane axis. The time-invariant system matrix F, of the continuous-time dynamics model of

Equation (4-2) is:

F {’“’" 0 ] @-12)

where

w, = atmospheric jitter break irequency, 14.14 rad/sec
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The noise distribution matrix G, is:

10 (4-13)
G =
The strength of the white Gaussian noise w,, given by @, , is:
) -
2
e @-14)
e. 20,
0o -
Tﬂ

0, = variance and mean-squared value for the atmospheric jitier process

correlation time constant for atmospheric jitter process (z, = 1/w)

a
]

The time invariant target dynamics state transition matrix @, (As) is given by:

exp(-w At 0
@, (An = PC0AD (4-15)
¢ 0 exp(~w A1)
The filter dynamics noise covariance Q,, is given by:
qdall O
Q, = (4-16)
0 qdaZZ

- s \
2(At
Qiary = 1 - exp|- (1: )
L \ a )
- { \

l-exp-z(f")
R

In the MSOFE simulations, the atmospheric jitter variance and K, (truth model gain

Quaz =

adjustment from Section 3.2.2) were initially adjusted to yield a process noise strength in both the




truth and filter models equivalent to 6,°=0.2. The dynamics noise parameter values for the filter

were then adjusted during the tuning process.

4.2.3 Pogo Dynamics Model. The plume pogo dynamics model implemented in all filters

was identical to the model described in Section 3.2.4. The time-invariant system matrix F, is

given by:
F = 0 : (4-18)
~ ! =
! wpf 2Cpfmpf
wh e
o, = undamped natural pogo irequency (0.1 - 10 Hz, 1 Hz nominal)
G = filter damping coefficient chosen to be 0.05 [40]

The noise distribution matrix G, is:

0
G, - 2 (4-19)
Kpfmpf

and the white Gaussian noise w,, given by @,, is of unit strength:

Q=1 (4-20)

The time invariant target dynamics state transition matrix @, (As) is given by:

4-21)

@, AN DA

oA - [d)p“(At) P, (AD) J
4

and the scalar elements of @, (As) are the same as given in Equation (3-43), Section 3.2.4. The
filter dynamics noise covariance @, is not included here due to its extreme length and the

complexity of its elements. The interested rcader is referred to the software for a complete

description of this matrix.




4.2.4 Centroid Equilibrium Point/Center-of-viass Offset Model. In previous theses
[8,9,14], the measurement determined from the LEL (by either speckle return or Doppler spectra
of the plume and hardbody) was processed in an independent center-oi-mass offset filter. The
estimate from that filter was then added to a FLIR filter that estimated the position of the centroid
in order to obtain center-of-mass position. Since pogo was not included in the filter models, the
offset between the center-of-mass and the intensity centroid was modeled as a constant. For this
thesis, the same dynamics model is used, but the offset state is augmented to the previous models
to form a single nine-state AFIT elemental filter. The constant offset state describes the distance
between the equilibrium po. b« 1t which the plume pogos. The offset is mnodeled as a bias.
Equations (4-2), (4-4), and (4-5) are still applicable but are expressed in scalar form since there
is only a single state. The bias is modeled as a simple integrator, with driving pseudo-noise for

filter tuning purposes.

The elements of the linear, time-invariant stochastic differential equation are:

F, = 0
G, = time-invariant noise distribution matrix, equal to unity

white Gaussian noise process, independent of the noises driving the target
dynamics and atmospheric jitter models, with mean and covariance kernel
statistics:

R

_
<
n

Ew D} =0
Elw, (Ow, ¢ + D} = Q, (%)

4-22)

and @, = 1.

The elements of the equivalent discrete-time filter propagation Equations (4-4) and (4-5)

are given by:
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@, (A1) = time-invariant state transition matrix, equal to unity

Q., = filter dynamics noise variance given by equal to Q, At

4.3 Measurement Models

This section discusses the filter measureinent models implemented for this thesis. The
first subsection explains how the raw FLIR data is processed through an enhanced correlation
algorithm. By use of templates, the algorithm generates “pseudo-measurements” for the linear
Kalman filter, The linear and non-linear update functions employed for the Kalman filters are also
presented. Finally, the last subsection describes the measurement model used in conjunction with

the low-energy laser measurements.

4.3.1 FLIR Measurement Model. Measurements of the intensity centroid’s position are
generated by an enhanced correlator algorithm, showan in Figure 4.1, developed by Rogers [27,41].
Unlike the standard correlator tracker that correlates the current FLIR data frame with the previous
data frame, this enhanced correlator algorithm correlates the current FLIR data frame with a
template that represents an estimat of the target plume’s intensity function. "Psuedo-
measurements” of the centroid’s position offsets are produced by this correlator, and since the
"pseudo-measurements” are of a nonharsh nonlinearity with respect to the states being estimated,
this tracker uses a nearly lincar Kalman filter. Because the enhanced correlator algorithm and the
template generation have not changed, the next two sections describing their operation are

reproduced from the previous thesis with slight modifications [14].
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Figure 4.1 Linear Kalman Filter/Enhanced Correlator Algorithm

4.3.1.1 Enhanced Correlator Algorithm. The algorithm presented here was developed as

an alternative to an earlier 64-dimensional, nonlincar measurement model. Previously, an
extended Kalman filter processed raw FLIR measurement data from a standard FLIR sensor, with
no correlation algorithm utilized at all [31]. With the enhanced correlator algorithm, a nearly
linear Kalman filter is employed since the output measurements from the correlation algorithm are
2-d’mensional position measurements that are nonharsh nonlinear functions of the staies to be
estimated. As will be seen in later in the section, the nonlinearity is a sinusoidal function caused

by the introduction of the ‘lume pogo effect into the model. The sinusoidal function is a mild

nonlinearity in comparison  +he extended Kalman filter model required to process raw FLIR




data. This enhanced correlator/linear Kalman filter configuration performed as well as the

extended Kalman filter with respect to rms tracking errors and further provided a reduction in

computational loading. The "enhancement” occurs in the following manner [41]:

L.

The most current FLIR data is correlated with a template (which is an estimate of the

target’s intensity function), instead of with the previous FLIR data frame.

Instead of outputting the peak of the correlation function, a technique knowr as
"thresholding" is used along with a simple center-of-mass computation. The enhanced
correlator outputs the center-of-mass of the portion of the correlation function that is
greater than some predetermined lower bound. Consequently, the enhanced correlator
has no difficulty distinguishing global peaks from local peaks, as do many conventional

"peak-finding" correlation algorithms.

The FLIR/laser pointing commands are generated via the Kalman filter propagation cycle

instead of by the "raw measurement” output of a standard correlation algorithm.,

The Kalman filter estimate, x(#*), is used to center the template, so that the offsets seen
in the enhanced correlator algorithm should be smaller than those visible in the
conventional correlator. This increases the amount of "overlap" between the actual FLIR

data and the stored template, and thus improves performance.

Referring back to Figurs 4.1, the enhanced correlation algorithm uses the 8 x 8 array of

target intensities obtained by the FLIR measurement, to establish a 64-element shape function

from the target plume intensity profile (Section 3.3.1). The intensity functions are centered on

the FLIR plane by translational shifts using centroid offset estimates from %(¢,"), using the "shifting
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property” of the Fourier Transform, where negating phase shifts are applied in the spatial
frequency domain to accomplish a translational shift in the original domain. Rather than perform
the difficult correlation in the time domain, the Fourier domain allows one to apply
straightforward multiplication to implement the "translational shift" of the intensity functions and
eventual correlation with the template. Exponential smoothing is then used to average the result
with previously centered images to yield an updated template. The current FLIR data is then
correlated against the template of the previously stored shape function that has been centered on
the FLIR imagc plane. The outputs of the algorithm are two lincar offsets, x, and y, as shown in
Equations (3-1) and (3-2), that yield the highest correlation of the current data with the template.
These "pseudo-measurements” are then fed to the linear FLIR Kalman filter for its update. The
filter provides the updated estimate, £(¢*), used to centes the FLIR intensity profile to be included

in the template generation for the next measurement.

4.3.1.2 Template Generation. ‘The teniplate reconstructs the shape, size, and location of
the intensity centroid using the raw noise-corrupted FLIR measurements. < template generation
begins with an input of a FLIR frame of data to the enhanced correlator algorithm of Figure 4.1.
Using the "shifting" property of the fast Fourier transform (FFT), which states that a translational
shift in the spatial domain is equivalent to a linear phase shift in the frequency domain, the

required phase shift is computed by:

Flgx = %y ¥ = Ya) = G, £)expi=2n(f, = X + £, * Vo)) (4-23)
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where

F{+} = Fourier transform operator
8(x,y) = 2-dimensional spatial data array

G(f,. f,) = Figlxy)
f..f, = spatial frequencies

The Fourier transform is implemented in the simulation software using the Cooley-Tukey
algorithm [41]. The target plume intensity shape function is "centered on the FLIR plane" by
phase shifting the transformed function an amount equal to:

Xaplt) = 2,07) + 2,07) + £,(17)cosb,

Yual) = 9,(7) + 9,0°) = £,(67)sind,

(4-24)

where 2, 9,, %,, §,, and £, are the state estimates defined in Equation (4-1), and 0, is the filter’s
estimate of the velocity vector angle in the FLIR plane. For the phase shifting function, the target
dynamics states (denoted by subscript ¢), always refer to the centroid center-of-intensity. In the
AFIT elemental filter, the target dynataics states of Equation (4-1), refer to the hardbody center-
of-mass, so the estimates used in Equation (4-24) are calculated by subtracting the filter’s
estimated offset from those states to obtain 2, and §,. Once the data is centered on the FLIR
plane, it is incorporated into an updated template for the next sample period. In the simulation,

the Kalman filter’s first update cycle is bypassed to form the initial template.

The template is generated by averaging the N most recent centered intensity functions
observed by the FLIR sensor. The averaging process tends to accentuate the target intensiiy
function and attenuate the corrupting background and FLIR noises. The memory size N is chosen
according to how rapidly the shape functions change, i.e., highly dynamic intensity functions

require small values of N, while slowly varying functions nse large N values. Typically, a true




finite memory averager would require a large computer memory {22], However, the enhanced
correlator algorithm circumvents the memory storage issue by incorporating an “exponential
smoothing" technique to approximate the averaging. This technique has properties similar to finite
memory averaging, but with the advantage of requiring only the storage of a single FLIR frame

of data. The template is maintained by the exponential smoothing algorithm given by:

K = vi¢) + (1 - pha,) (4-25)
where
I(,) = “smoothed estimate” (templatc) of the target’s intensity function
I(y,) = ‘raw" intensity function from the current FLIR data frame

Y smoothing constant: 0 <y 2 1

The smoothing constant y is comparable to the vaiue selected for N. From Equation (4-25), it can
be seen that large values of y emphasize the current data frame en correspond to small values

of N. Based on previous studies [19,45], a smoothing constant of y = (.1 is used for this thesis.

A reinitialization al2orithm is used once after the first ten sar:)le periods (although it
could be called periodically thercafter as well, in actual implementatiors). Once the template is
computed, its centrcid is calculated and shifted to the center of field of view for the template, thus
<liminating any biases. It is this template which is now stcred and correlated with the next FLIR

data to prodnce the “pseudo-meazsureinients.”

4.3.1.3 "Pseudo-Measurements”. The template serves as the best estimate of the shape
of the target pluine iniensity function prior to receiving a new FLIR data frame. The cross-

correlation of the incoming FLIR data with the template provides the position offsets from e
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center of the FOV to the centroid of the target intensity image. The cross-correlation is computed
by taking the inverse fast Fourier transform (IFFT) of the equation (41]:

Flgy) » i)} = G(f,, fYL*( L. f) (4-26)
where

F{+} = Fourier transform operator
g(x,y) = measured target intensity function of the current FLIR data frame
I(x,y) = expected target plume intensity function (i.e., template)
g(xy) *I(x,y) = cross-correlation of g(x,y) and I(x,y;
G(f..f,) = Figlxy)}

L'(f,.f,) = complex conjugate of F{/ (x,y)}
After the: IFFT is accomplished, the values of the correlation function, g(x v) * I(x,y), are modified
such that any value less than 0.3 of the function's maximum value is set to zero [19,37]. This
"thresholding" technique is used to eliminate false peaks in the correlation function that occur due
to noise and other effects. As shown earlier in Figure 4.1, the output of the image correlation is
the offset of the "thresholded" FLIR intensity centroid from the center of the FLIR FOV, This
offset is assumed to be the result of the summed effects of target dynamics, atmospheric jitter, the

pogo effect, and measurement noise.

If the filter only receives FLIR measurements and therefore only tracks the plume centroid
(ie. no LEL measurements), as was the case with the "FLIR filter" used in previous theses
18,9,14] and the filter implemented in MSOFE for this thesis, then the x- and y-components of the
offsets are the pseudo-measurements provided to the Kalman filter. In this case the target
dynamic states describe the motion of the centroid. For the following development, an eight-state
filter used in MSOFE simulations will serve as an example. The state vector x of Equation (4-1)

consists of 4 target dynamics, 2 atmospheric jitter (one state per axis) and 2 pogo states.

4-17




The offsets from the enhanced correlator arc expressed in terms of Equation (4-1) as:

xoﬂhl

Yo 2V * Vo xpslne, * Vv,

=x b 0+ .tpcosel * Vv @27

where

* Y (4-28)

and €, is the angle between the velocity vector and the x-axis of the FLIR plane. These two

measurements can be represented in state form as:

z(t) = b, [x, (1) 0] + v, (1) (4-29)
where
2(t) = [ Xypult;), Yopelt,) 17 measured in pixels
hix(s),}] = nonlinear measurement function vector given by Equation
(4-27)
x.(t) = state vector of Equation (4-1)
v () = 2-dimensional, discrete-time, white Gaussian measurement

noise (in pixels) with statistics:

Ebe) = 0

R 1=t (4-30)

E{ve v 7)) = 0 ies
i J

Note that because of the pogo states being defined along the velocity vector and being included

in the output equations, this measurement model is nonlinear in the filter states and the extended




Kalman filter update cycle described in Chapter II (Equations (2-26) and (2-27)) must be applied.
The equations are [21]:
K(t,) = P )H[(H,P,(¢))H] + R,]"
2,07) = 2,47) + Ka){zt) - b 12,6, 1]} @30
P(4) = P,(t) - K@DH P ()

where
K(1) = 8x 2 filter gain matrix
P,(r) = 8x 8 filter covariance matrix
hix{r),t] = 2-dimensional nor-linear measurement function; Equation (4-29)
H, = linearized measnrement matrix; Equation (2-26)
R, = 2 x 2 measurement noise covariance matrix; Equation 4-34)
£(y) = 8-dimensional estimated state vector; Equation (4-1)
zZ(1) = 2-dimensional measurement vector; Equation (4-29)
(t;) = time instant immediately before measurements are incorporated at
time f,
(1) = time instant immediately after measurements are incorporated at
time ¢

For the example 8-state filter, using Equations (4-27) and (4-28), the linearized FLIR measurement
matrix H, is given by:

|10 H Ha 10 Hy 0 @32)

f 101 H, H, 0 1 H, 0

where the scalar elements are:

o - onlx,1] %
L P (4-33a)

2 2

+ X
s 4 lregan

4-19




o = oh[x,1]  -xxx,
U = — 3 (4-33b)
4 T
x; * x: x-!,(l,')
Lt
H, = %;x d.__% (4-33¢)
x7 \/x; + xf x-!,(t,')
H oh,[x,1,] o EaX,
2 ox T3 (4-33d)
3 i
x: * x: x-.!,(l,')
Coomlxl  xx
Hy = —— = 3 (4-33¢)
4 7 2 2
xs * x4 "-‘[(’5-)
oh[x,t
Hy, = % A& (4-33f)
x7 x: + x} JPS
/ .

Note that, in the observability tests for which 0, was artificially assumed to be known, the H,,,

H,, Hy, and H,, terms in Equation (4-31) become zero and H,, = cost, and H,, = -sin@,.

The measureraent noise v,(#,) represents the combined corrupting effects of the spatially
correlated background noise, the FLIR sensor noise (Section 4.3.1), and the errors due to the

FFT/IFFT processes. The covariance matrix R, (with units of pixels’) associated with this error

is given by [13,33,41]:

R - 0.00436 0 (4-34)
! 0  0.00436




For the elemental filter implemented in the AFIT software, a ninth state, centroid
equilibrium point to center-of-mass offset x,, is augmented to the state vector of Equation (4-1).
The four target dynamics states (x,y,,v,.,,) in this case describe the motion of the hardbody center-
of-mass. The fundamental extended Kalman filter update equations remain the same, but the non-
linear measurement function and associated partiais take on a new meaning. Equations (4-27)
become:

X = %, * X, + (x, - X,)C080, + v | 435)
Yoper = Yo * Yo = (6, = x,)sin0, + v,

and cos 9, and sin O, retain the same meaning given in Equation (4-28).

The linearized measurement matrix H, is given by:

10H, H, 1 0 H, 0 H,

H = (4-36)
/" l01 H, H, 0 1 H, 0 H,
The new partials of h[-, ] are given by:
COhlxe]l  xi(x - x,)
Hy = = — (4-37a)
% R ——
Bt rud )
oo oh[x, 1]  -xx,(x, - x,)
14 - p) T3 (4-37b)
g IS
\/x_, ] 3 e8,()
oh[x,t
p = Omxedl X (4-37c)

3
17 y
X 2 2
7 Yo+ x |
3 4 x-:,(l,')
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H oh,[x,1] . X @37¢)
19
ox, [ 3 3
9 x3 + x4 ‘.”("_)
H - oh,[x.1] (X, - xy)
S (4-370)
yx: * x: x-.\‘,(!,')
H - dhlx,t]  x(x, - %)
e @370
“x; * x: x-!,(l,')
Y @37
27 a
x7 x: * x: "’,(’(-)
P (4-37h)
29
o. /
xg x: + x} x'f,(lf)

The state dimension is now nine, so the dimensions of the matrices in Equation (4-31) change
accordingly. The reader should keep in mind that only two FLIR measr ments are brought in
at this update, so the measurement dimension remains at two, thereture, the corresponding
measurement noise covariance matrix K, remains the same as in the eight-state measurement

update developed earlier.

4.3.2 Doppler Measurement Model. The primary objective of this research is che precise
tracking of the missile hardbody and determination of its center-of-mass location in the presence
of plume pogo. The basic premise underlying the dynamics modeling efforts is that the center-of-

mass is located at a constant offset distance relative to an equilibrium point about which the
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intensiiy ~entroid oscillates, The offset distance is oriented angularly using the filter-estimated
velocity st in the FLIR image plane [8]. Figure 4.2 illustrates the geometry of estimating the
offset distance and the dependence of the sca': and offset computation upon the filter's estimates
of the position and velocity of the intensity centroid immediately after the FLIR update. (Note that
Figure 4.2 depicts the ideal situation; in general, the filter estimstes of the centroid position,
velocity, and the orientation angle are not equal to the truth model values.) Originating at the
intensity centroid’s estimated position, a low-energy laser is scanned along the estimated velocity

vector. Ideally, identification of reflections from the hardbody allow determination of the near
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Figure 4.2 Filter Estimate of Offset Distance (Ideal Conditions)

4-23




and far end of the missile, so the center-of-mass is calculated as the midpoint between the two
ends. The reflections of the low-energy scan generate a measurement of the offset distance, t
be utilized as aimpoint information for the high-energy laser. The offset measurement delivered
by the scan is a function of the constant offset plus wanslation of the centroid from its equilibrium
point due to the pogo phenomenon. Because the offset was only modeled in the AFIT elemental

filter, the Doppler offset measurement is only applicable to the AFIT software simulations, which

used the nine-state filter.

The previous theses [8,9,14] uuiized a two-filter approach in which the FLIR filter and
center-of-mass filter functioned autonomously; the FLIR filter had no knowledge of the existence
of the center-of-mass filter. Both Eden [8] and Evans [9] utilized the low-energy-laser speckle
return of the hardbody/plume interface to generate measurements for the center-of-mass filter.
Herrera [14] utilized the Doppler spectra in the laser return to derive successfully a more accurate,
unbiased, offset measurement, but still maintained the same basic independent-filter structure.
Since the Doppler measurement model used for this research was developed in the previous thesis

[14], the description 1 is section has been reproduced with some revisions.

The Doppler measurement model provides a measurement based upon the low-energy laser
Doppler return of the hardbody. The significant dissimilarities between the plume and hardbody-
induced Doppler returns can be exploi.cd to discern the plume/hardbody interface (Section 3.3.3)
precisely, and provide information regarding the location of the hardbody. The low-energy laser
measurement is provided to the Kalman filter whenever the laser intercepts the hardbody, and the

hardbody-induced (and plume-induced) Doppler return is received by Doppler return sensor

equipment. The resulting measurement to be provided to the filter is a noise-corrupted offset




distance which is a linear function of filter's offset and pogo estimates. The measurement

function is given by:

Xopoat = %o = %o (4-40)

The discrete-time scalar measurement model is given by:

where

Z(f,)

xo (‘l)

v (1)

where R, = R, (true Doppler measurement variance), a function of low-energy laser wavelength,

1adar aperture, and signal-to-noise ratio (Section 3.3.3). The measurement matrix H, is defined

as:

H =[000000 -10 1] (4-43)

2(t) = H,x,(t) + v,(1) (4-41)

measurement of the offset distance
measurement matrix
center-of-mass offset state

discrete-time, white Gaussian measurement noise with

statistics:
E{v(t,)} =0
R, L=y (4-42)
E{v(t,)v(tj)} *1o .y

)

Since the measurement is linear, the linear Kalman filter update cycle described in Section 2.2,2

(Equations (2-22)-(2-24)) is used.

In some instances, the low-energy laser sweep may be unsuccessful in geaerating a

measuremeitt, either due to missing the hardbody because of pooi estimation of the centroid

location and velocity vector orientation, or due to poor conditions for discerning the diffeiences
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in Doppler frequency spectra between the hardbody and plume. If a measurement is not generated

bye the LEL sweep, the LEL update is skipped.

4.3.3 Filter Parameters. This section provides a consolidated reference of the parameters
used in the AFIT simulation. Presented below are definitions of the modeling parameters, initial

conditions, and tuning parameters for the nine-state filter employed in this research.

4.3.3.1 Initial Conditions. Since initial acquisition characteristics of the filter have been
explored in the past [47], emphasis is placed upon the tracking problem, rather than acquisition
and tracking. Thus, taken from previous research [8,9,14)], the filter initial state estimate £, is
artificially initialized to zero error for the position, velocity, and pogo states of Equation (4-1).
The position states x;, and x, are initialized on the true center-of-mass with the target plume
intensity centroid centered in the FLIR FOV. The velocity states x, and x, are initialized in
accordance with the target’s initial trajectory conditions as defined in Section 3.4.1. Boih
atmospheric states x; and x, are initialized to zero. The offset of 'he plume from its equilibrium
point is initialized to zero, as well as the velocity of the oscillation. The constant distance
between the equilibrium point and the center-of-mass are also initialized to true conditions (87.5

meters, or 2.92 pixels).

The initial state covariance matrix P(t,) is:




(100 0 0 000 0 0]
010 0 0 0000 0
0 020 0 0000 0
0 0 0 200000 0 0
Pe)=[{0 0 0 0 2000 0 (4-44)
00 0 0 02000
00 0 0 00500
00 0 0 000250
(00 0 0 0000 2

where the units of the covariance associated with the position states x, and x,, the atmospheric
states x; and x,, the pogo position state x,, and the offset state x,, are pixels?, and those of the

velocity states x; and x, and the pogo velocity state v, are expressed in pixels?/seconds’ [9).

4.3.3.2 T"uning Values. The measurement covariance matrix for the FLIR R, , was

established empirically in past research [27,4]]. R, (with units of pixcls®) is given by:

| 0.00363 0 (4-45)
FLIR 0 0.00598

The measurement variance for the Doppler measurement Ry, , is equal to the true measurement
variance and is a function of the low-energy laser wavelength, SNR, and aperture diameter of the
transmitter. The filter measurement variance i:. carried over from Herrera’s research and is given

by [14]:

(4-46)

6 2
R =R = B
Doppler ] T ——
[3kp¢SNR }
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where
Rpome = fllter measurement variance
R, = true measurement variance
0; = beam diffraction limit
k, = pixel proportionality constant. !5 prads/pixel
SNR = signal-to-noise ratio; 10
Both atmospheric variances ¢,,’ and o,,,’ are equal to 0.2 pixels® in accordance with the
truth model (Section 3.2.2)[9]. The process noise strength for the pogo state is dependent upon
the desired rms amplitude of the pogo oscillation c;,,2 {40]). The filter pogo gain constant K, is
initially set equal to the truth pogo gain constant K, (Section 3.2.4, Equation (3-38)) and then
adjusted if necessary while leaving the truth noise strength constant. Nominal rms pogo amplitude
for this research was carried over from Rizzo's research and set to o,’ = .112 pixels® at a
frequency of w, = 1 Hz. The offset state dynamics noise variance Q,, is equal to 0.7 pixels?,

based upon Evans’ research [9]. The probability of miss for the Doppler measurement model was

set at 0.01 (see Section 3.3.3.4).
4.4 Summnary

This chapter presented :he dynamics models associated with the states incorporated into
the various filters tested in this thesis, The dynamics model was presented in this fashion to
enable the reader to determine the distinct model used for each filter discussed in the next chapter.
The measurement models for both the FLIR and Doppler measurements were also introduced.
The Kalman filter accepts pseudo-measurements generated by the enhanced correlator algorithm
after processing the raw FLIR data. The updatc is implemented through use of the extended

Kalman filter update cycle, since the pseudo-measurements are nonlinear in the state vector.
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Measurement updates for both the MSOFE filter models and the AFIT model were discussed.
Section 4.3.2 explained how the AFIT filter perform: an additional linear update when the
Doppler return measurcment is made available. Finally, a summary of the initial conditions and

tuning parameters was presented.
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V. Observakility Grarrian and MSOFE Analysis

5.1 Introduction

This chapter presents the procedures followed for performing the observability studies
referenced in the objectives in Chapter I. The rationale and a brief theoretical description of the
analysis methods ussd are discussed in addition to the results obtained. The next section of this
chapter enumerates the filters simulated and analyzed in MSOFE. The structure of each fiter is
introduced and a justification for its analysis is provided. Finally, the results of the Monte Carlo
simulations in MSOFE will be presented for each filter configuration. The conclusions resulting
from the stochastic observability tests and MSOFE Monte Carlo analysis will be presented in this
chapter and summarized again in Chapter VII, along with the associated recommendations arising

from the analyses.

None of the filter structures analyzed in this chapter include the LEL measurements.
Since the principal intent of both the stochastic observability tests and the MSOFE analysis was
to assist in verifying some of the difficulties Rizzo identified, the same types of models were used
(and none of Rizzo’s models included LEL measurements). Therefore, the offset state is not
included in any of the models. In these instances, one would expect to find observability
problems (especially on offset and pogo and possibly jitter). On the other hand, inclusion of the
third measurement, as in the elemental filter discussed in the next chapter, lends insight directly
into the offset and pogo states and one would expect observability to improve in the offset, pogo,

and possibly the jitter states. An equivalent set of observability tests would have to be




accomplished on the augmeated fllter structure with the third measurement to verify any

improvement.

5.2 Stochastic Observability Tests

This section will present the procedures followed for performing the stochastic
observability analyses. First, a brief review of why these studies were initiated is outlined. Next,
a brief explanation of the mathematical theory is included, followed by a description of the filters

analyzed and the results obtained. Conclusions from the findings complete this section.

5.2.1 Background Review. During the course of his research, Rizzo discovered a number
of estimation problems with the simulations in the AFIT software [40]. He tested two different
versions of the elemental filter. The first included eight states: six target dynamics states
(position, velocity, acceleration along the FLIR plane axes), and two atmospheric jitter states. His
second filter included the same eight states plus the two-state pogo model used in this thesis. He
found that, contrary to expectations, inclusion of the pogo model in the filter degraded overall
performance of the Kalman filter. He formulated several hypotheses to explain the finding, most
of them based on the fact that the pogo model may be interacting with other states in the fiiter
model. In his research to determine whether this was the case, he discovered that the atmospheric
jitter model embedded in the Kalman filter was not performing as well as previously expected.
In addition, his results indicated that there was probable interaction occurring between the pogo
states and the jitter states that resulted in the degradation in performance of the 10-state filter
compared to the 8-state filter. For this reason, he recommended that the plume pngo dynamics

states be removed from the filter model until further studies could verify the interaction and a

possible solution found.




During his thesis research, Rizzo also performed a stochastic observability test to gain
insight into the relative observability of the states in his 10-state filter model [40]. He concluded
that the filter contained a maximum of five states that were unobservable or only weakly
observable in the output. Those states included the velocity and acceleration states characterizing
the dynamics, and the pogo velocity state. This is a reasonable conclusion, since acceleration and
velocity are not directly measured and would be more difficult to estimate in the chosen model.
Because of the relatively benign trajectory being simulated for the ballistic missile, and the
difficulty of estimating the acceleration states, Rizzo recommended that the target dynamics model
be changed to a second-order shaping filter driven by white, Gaussian noise, along each axis (as

opposed to the third-order model that included acceleration).

The recommendations made by Rizzo were implemented in the succeeding three theses
[8,9,14], and the elemental FLIR filter that was used consisted of six states: four target dynamics
states and two atmospheric jitter states. The velocity states were modeled as first-order lag filters
driven by white, Gaussian noise. The simulations from the last three theses indicate that there is
still a problem with estimating the atmospheric jitter states; specifically, the mean errors at (,,,)
are much greater than the mean errors at (1,*). Therefore, the author was motivated to perform
another series of stochastic observability tests on a series of filters with differing structures using
the new target dynamics model (with no acceleration states) and comparing the results to tests
with the original six-state target dynamics model. In addition, it was deemed useful to revisit
filter structures that included the pogo states to gain further insight into how they may be affected

(or not affected) by the modeling of the target dynamics and/or atmospheric jitter states.
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For the MSOFE and AFIT elemental filter analyses, the target dynamics model was
changed from v = -/, v + w to v = 0 + w, to allow for constant velocity paths better than those
whose mean values would tend to decay toward zero over each propagation (as in the original six
state model). Since this study was originally implemented to discover observability problems with
the six state "FLIR filter" used by the previous three theses, that was the model studied. In the
future, it would be useful to apply the same observability tests to the constant velocity models

used later in this research.

5.2.2 The Stochastic Observability Test. If a stable, discrete-time dynamics/discrate-time
measurement system of order n can be described by Equations (2-9)-(2-17), then the observability

gramian matrix can be expressed as [21]:

N
M (O.N) & E & 7(0HT(HH(i)D,0) (5-1)

ial

The discrete-time system is completely observable if and only if any of the following criteria are
met: (1) the null space of the n x n matrix M, is 0€ R" for some finite N, (2) M), is nonsingular,
i.e., invertible, (3) M, is positive definite, (4) the determinant of M,, is nonzero [21]. If M,, is

of rank k<n, then it is said that there are (n - k) "unobservable states" in the model.

In order to gain some insight into the "relative observability" of the states, the magnitudes
of the eigenvalues of M, may be inspected. Theoretically, none of the eigenvalues should be
negative, all should be real-valued, and there are as many unobservable states as there are zero
eigenvalues. If any eigenvalue associated with a state is several orders of magnitude smaller than

the other eigenvalues, that is an indication that the state is difficult to observe.
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The observability gramian matrix and its eigenvalues were evaluated using the discrete
Lyapunov equation solver in a controls design software packages called MATRIX, [15]. The
software was installed on a SPARC II workstation and utilized double precision numbers for all
calculations. For independent verification of the results gained from MATRIX,, the equivalent
functions on an alternate software package called MatLab [46] were used. Both sets of tests
yielded the same results. The next section presents the outcomes of the stochastic observability

tests and the resulting conclusions.

5.2.3 Observability Test Results and Conclusions. The objectives in Chapter I outlined
six different filter structures which were to be subjected to the stochastic observability condition.
The structure of each filter is listed in Table 5.1. Each filter was to be analyzed with a known,
constant target angle O relative to the FLIR x-axis (set to 45 degrees or n/4 radians) and with a
general angle derived from the velocity vector (as was done in the simulations). Recall the
definition of the measurement matrix H, (Equation 4-32) used in the measurement equations. In

the constant velocity/constant angle case, the nonlinear elements defined in Equation (4-33) that

Table 5.1 Filter States for Stochastic Observability Tests

I Fiiter x/y, vy, a/a, Atmosphere x/v, I Total States
A 2 2 2 6 - 12
B 2 2 2 2 - 8
C 2 2 - 6 - 10
D 2 2 - 2 - 6
E 2 2 - 2 2 8
F 2 2 2 2 2 10




are associated with the velocity states become zero. The nonlinear terms associated with the pogo
state (H,, and H,,) become constants, Therefore, for the known constant angle cases, the linear
Kalman filter update equations are used. For the general angle case, the extended Kalman filter
update equations are used with the nonlinear measurement function . [x,/] and the H, defined as

in Equation (4-33) (i.e., the nonlinear terms are included).

For the case with the known constant angle 0, the stochastic observability tests yielded
inconclusive results. The observability gramian matrix for all structures was founu to be close
to singular or badly scaled. Inspection of the elements of the matrices showed that the magnitudes
varied by over 60 orders of magnitude with individual elements ranging from orders of 10% to
10%. Of course, these eigenvalues that were many orders of magnitude smaller than the largest
eigenvalues could be deemed essentially zero, indicating unobservable or essentially unobservable
states. Moreover, some of the eigenvalues calculated were either negative or complex. These
erroneous results are most likely the due to ill-conditioned ® matrices, causing numerical precision
difficulties with the software and hardware. 1t should be reiterated that all calculations were done
in double precision (64-bit), which was the only avenue available to the author for avoiding such
numerics problems. These first set of inconclusive results were obtained using the original sample
period of Ar=1/30 seconds. The filters were also analyzed with the reduced sample period of 1/60
seconds to determine if there was any improvement in the scaling, but results were similarly

inconclusive.

Since the numerical difficulties were thought to be a result of the large difference in orders

of magnitudes of elements of ¢ associated with the different states, it was a reasonable deduction

that transforming the system with a scaling matrix before applying the observability test might




yield better results. Several combinations of scaling matrices were applied and the observability
gramian M), and its eigenvalues calculated for each. Through use of the scaling matrix, the order
of magnitde variation for the diagonal elements of M), for some of the filters was reduced to
about 20 (10% variation). The associated eigenvalues for such cases were all positive and real,
but showed similar large differences in orders of magnitude. It was hoped that groupings of
eigenvalues, some large and others many orders of magnitude smaller, would provide some insight
into unobservable or weakly observable states, since the eigeavalues in the smallest groups can
be declared essentially zero. However, as emphasized before, even the groupings resulting from
use of the scaling matrix varied so extensively in magnitude (beyond the precision of the machine
implementing the test), that it would probably be overly speculative to make any Jefinite

conclusions. Therefore, these results were also considered inconclusive.

Because the observability issues were unresolvable for the known, constant 0 angle case,
no attempt was made to subject the filters to the observability conditions for the general angle-of-
attack case. Because of = insurmountable numerical precision problems, the only other way to
gain insight into the observability of the states is to analyze the statistics of Monte Carlo
simulations. If better hardware and/or software are made available to researchers in the future,

it may be beneficial to attempt the stochastic cbservability studies again.

5.3 MSOFE Monte Carlo Analysis

The Multimode Simulation for Optimal Filter Evaluation (MSOFE) program [6] is a
package coded in the FORTRAN software age, that can perform both covariance and Monte
Carlo analyses on single linear teaded Ka filters. The code is self-documented and

constructed in a modular form su it the truth 5 wcw and filter models are programmed in
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subroutines accessible to the user. The core program that performs the analysis is in a separate
package and, for this research, was not altered. The initial conditions and tuning values for the
truth and system filters are contained . 1 data input file, enabling runs to be performed without
re-compiling and linking the code. MSOFE produces data listings which are processed through
another program called MPLOT, whichk produces data files compatible with numerous different

plotting programs. The plots appearing in this thesis were produced using MATRIX, [15].

A considerable amount of time was spent becoming familiar with MSOFE and creating
and debugging the continuous-time truth and filter models in the code. Now that the basic models
have been established, continued research on with this package should be somewhat simplified
since only slight modifications to the analysis procs <~ ueed be made. This section presents the
procedures used for analyzing the filters using MSOFE and the results obtained from that analysis.

Since any explicit conclusions drawn from the stochastic observability studies would be
speculative, it was anticipated that analysis of some of the same filter structures through Monte
Carlo simulation may prove more fruitful. The primary objective of the analysis was two-fold:
first to investigate the estimatability of the atmospheric jitter and plume pogo; and to determine
if there were any degrading affects caused by interaction of the atmospheric jitter and pogo states.
Another reason was to check out the filter performance independently of the "AFIT software” to
ensure that performance attributes (e.g., poor jitter estimation at £, vs. good estimation at ¢,* )
were really inherent in the problem and not due to some quirk in the simulation (especially of the
truth model) in the "AFIT software”. For these reasons, the emphasis of the analysis presented
in this section has been placed in those areas. Also, because of the unforeseen time expended in
the familiarization and debugging process, the number of filter configurations originally

established for analysis in the objectives (see Table 1.2) was reduced to the ones which the author
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felt would yield the most insight into the estimatability of jitter and plume pogo and assist in
analyzing the performance of the elemental filter, This section describes the results of the 10-run
Monte Carlo analysis performed using MSOFE. Appendix A-eontains a brief discussion of how

the statistics in this chapter and the next were calculated.

5.3.1 MSOFE Filter Configurations. Table 5.2 shows the subset of the system/filter
combinations enumerated in Table 1.2, which were subjected to Monte Carlo analysis with
MSOFE. Note that, as mentioned in the chapter’s introduction, the LEL measurement is not
incorporated into any of the models and therefore the offset state is not included. Engineering
intuition and past experience (especially Rizzo’s results [40]) lead one to anticipate observability
problems without the LEI. measurements. It is anticipated that inclusion of the LEL

measurements should assist the filter in estimating the more weakly observable states.

Table 5.2 Filter/Truth Model Combinations Analyzed with MSOFE

| TRUTH MODEL
SIM N DYN POGO ACCEL | JITTER

2z

4
4
4
4
4
4
4

[~ - I~ S - N - - N O -

Notes: 1. Filter structure does not match truth model.
2. Analysis performed for both known constant and general angle cases.
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Combinations 1, 3 and 5 from Table 1.2 were not analyzed because the filter contained
states (pogo) that were not included in the truth system. The last :ix combinations fror Table
1.2 were not analyzed because they contained acceleration states in the truth model. Siuce the
intention was to use the *4SOFE analysis as a stepping stone to analysis of the elemental filter,
which did not contain acceleration states medeled in the dynamics, those runs were considered
to be of low priority. Table 5.2 shows that 4 different filters were tested against three different
truth models. All seven combinations in the table were tested with a deterministic constant angle
between the velocity vector and the positive FLIR -axis (8, = 60°). The simulations 6, 8 and
10 in Table 5.2 were also analyzed with the general angle model in the filter., (Recall that the
difference is in the update model, which becomes linear for a constant known angle 6,, but
nonlinear for a general angle, defined in terms of the filter estimated velocities v, and v,, which

breaks the pogo into the FLIR axes x and y components; recall section 4.3.1.3.)

Six different pogo conditions were also considered for study to determine whether the
magnitude or frequency of the pogo oscillation affected estimatability of the pogo and/or
atmospheric jitter. Tae conditions are listed in Table 5.3. Since simulation number 10 of
Table 5.2 most closely approximated the simulation in the AFIT software, only that filter was
analyzed under all six pogo conditions. Pogo condition four, considered nominal for MSOFE
analysis, was simulated in the truth and filter models for the filters analyzed with the known

constant angle 6, (as denoted by Note 2 in Table 5.2).

In the MSOFE Monte Carlo simulations, as with the elemental filter evaluations of the
next chapter, the simulation coordinates are in terms of the FLIR plane. The filter states were

initialized to the true conditions in order to study tracking performance (as opposed to acquisition
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Table 5.3 Pogo Conditions for Nonlinear Filter Analysis

Pogo Gain Constant Initial
Cendition K, Pogo
Covariance
! 0.1 0.067 003780 44893
2 0.1 0.670 037800 44891 |
3 1.0 0.067 001195 4.489-3
4 10 0.670 0.11950 4.489-1 ‘"
5 10 0.067 0.00378 4.489¢-3
6 10 0670 0.03780 44891 |

performance from poor initial conditions). Based on a nominal velocity of 2700 meters/second
over the 10-second Monte Carlo simulation at an initial velocity angle of 60°, the component
velocities were initialized to v, = 450 pixels/second and v, = -779.4 pixels/second. All other
initial state conditions were established at zero. The variance for the atmospheric jitter process
in both FLIR plane directions was o,’ = 0.2 pixels?, the same as in the elemental filter. Unlike
the elementa! fi'*er simulation, the measurernent noise covariance is considered equal in both axes
(as might be expected in a more modern FLIR pixel array). The measurement noise variance R,

(with units of pixels?) associated with sensor noises was:

R 000436 0 (5-2)
d 0  0.00436

Nominal range was set at 200 Km and the same pixel proportionality constant k, = 15 nrad/pixel

was used. The choice of a decreased value for the nominal range was to reflect a scenario similar

to the actual scenarios anticipated by the sponsor at the Phillips Lahoratory [4,5]. The intention

was eventually to modify the simulations in the AFIT software to reflect similar scenarios.




5.3.2 Monte Carlo Analysis Results. Since sensitivity analysis using MSOFE was not
intended to be exhaustive, but only to provide insights into obvious filter performance deficiencies
aid ~*ate estimation interrelationships, this section will not list exact statistics for individual runs,
Also, to avoid redundancy of detailed observations (many simulations yielded nearly identical
results), it will discuss the general observations resulting from inspection of the plots obtained

from the simulations.

Sample plots that show specific features empliesized in the discussion are contained in
Appendix B. Figure B.1 is a typical sample of the plows produced from a simulation. The top
plot, Figure E.1(a), shows a direct comparison of the ensemble average truth state and ensemble
average filter estimated state (averaged over 10 runs). The solid line represents the truth and the
line of evenly spaced dashes represents the filter ¢stimate. The bottom plot, Figure B.1(b), shows
a comparison of the statistics calculated for the system and the filter over 10 runs. The solid line
denotes the mean error (ensemble average of filter estimate minus true value). The evenly spaced
dash lines are the mean filter-computed state error standard deviation. The dotted lines denote
the mean plus and minus one standard deviation calculated from actual errors. Good tuning is
indicated by 0 £ o, enveloping the mean + o of the actuel errors calculated from the Monte Carlo
analysis. The plots for the simulations discussed in Section 5.3.2 are contained in Appendices C

and D.

5.32.1 Linear Filter (Constant 6,) vs Nonlinear Filter. As previously mentioned,
configuration numbers 6, 8 and 10 in Table 5.2 were analyzed with nominal pogo conditions for
both a general and constant angle. Inspection of the plots for all three simulations showed

virtually no differences between the general angle and constant angle, These identical results
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verify the correctness of the extended Kalman filter update cycle used for the nonlinear, general
angle case. The identical results also indicate that the threa nonlinear filter configurations estimate
the velocity argle ¢, very well. Note that such accurate angle estimation is not necessarily an
indication of how weli the individual velocity states are estimated, but is a reflection of the ratio
of the estimated velocity states, since the angle 0, is a function of that ratio. With the exception
of the analysis dealing with different pogo conditions, all of the following results and conclusions

were drawn from comparison of the linear Kalman filters.

5.3.2.2 Position Accuracy. The most accurate filter estimation occurred when both the
truth and filter system did not contain atmospheric jitter states and matched each other in structure.
Simulation six demonstrated the highest position estimation accuracy (0 mean errors, 1o = 0.04
pixels). The filter was well tuned in all states. These results were expected and serve as a good
baseline for filter performance against a real world without jitter. This is not realistic, but leads
to the conclusion that, because estimation of pogo was fairly accurate (zero mean, ¢ = 0.04

pixels), the pogo model is sound and the pogc .iates are estimatable.

The most accurate filters when atmospheric jitter was simulated in the real world, were
the filter models in simulations 4 and 10. In these simulations, the filters are well tuned in all
states and deliver equivalent accuracies with zero mean errors and o = 0.18 pixels. In both
simulations, the high accuracy wonld be expected since the filter structure matches the truth
model., However, simulation 10 includes pogo states and simulation 4 does not. Analysis of
simulation nine also indicates equivalent position accuracy, despite the fact that the truth model

simulates plume pogc but the filter does not estimate it. Apparently, the errors due to the pogo

phenomenon are attributed to atmospheric jitter and appropriately compensated by the filter.




5.3.23 Amospheric Jitter Estimation. Comparison of the simulation data shows that
atmospheric jitter is the dominant effect on filter accuracy. All filter structures that didn't include
jitter when the truth model did (simulations 2, 7 and 8), drastically underestimated their own
errors and demonstrated poor accuracy relative to filters that estimated jitter. Errors were zero
mean, but standard deviations were twice as large (o = 0.3 to 0.4 pixels). Since total real jitter
has 0,2 = 0.2, or o, » 0.45, standard deviations of such a magnitude indicate large estimation
errors. In all three simulations, the filter attempted to compensate for unmodeled jitter errors by
overestimating changes in velocity (all three cases) and overestimating pogo oscillation magnitude
(simulation 8). Again, inclusion of pogo in either the truth model, the filter model, or both did
not noticeably affect overall position errors. No effort was made to tune the filters since that was
not the purpose of this exercise. With tuning, one could get more correct indications of trends,

but not including jitter states in the filter is nor a good idea.

When properly tuned, the filter was able to estimate jitter existing in the truth model with
zero mean errors and o = .25 (see simulations 4, 9, or 10). The plots of the jitter statistics show
that filter-computed eiror estimates at (¢, )(o » 0.30) are still greater than filter-computed error
standard deviations at (+* )(o = 0.20) by a factor of about 0.5. This is similar to the estimation
problem found by Rizzo [40], but not nearly to the same extent. Rizzo observed factors as high
as several orders of magnitude [24]. This discrepancy between the MSOFE and AFIT software
should be resolved. The filter does benefit by including the jitter states, since the uncertainty in
position caused by the jitter process itself is 0.4472 pixels. By including the jitter states, the filter

can decrease the uncertainty in position by about one half,
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5.3.2.4 Flume Pogo Estimation. All of the MSOFE simulations indicated that the pogo
phenomenon is not inherently difficult to estimate. Simulation 6 showed that if it is the only
disturbance on the centroid position (other than target dynamics), it is easy to estimate.
Simulation 9 showed that the filter is robust enough to compensate for errors due to pogo by
attributing them to jitter, However, simulation 8 showed that the converse is not true; inclusion
of pogo states cannot compensate for the existence of atmospheric jitter. Simulation 7 showed

that performance is very poor if neither jitter ncr pogo are included in the filter model.

Inspection of the pogo state plots from simulation eight show that the filter attempts to
cumpensate for errors due to lack of jitter estimation in its structure by increasing the pogo
oscillation magnitude. Since the power spectra of pogo and atmospheric jitter processes are
different (specifically, jitter has a higher break frequency than pogo and can appear almost white
in comparison to pogo, which shows a resonant power spectral density peak around its undamped
nawral frequency) all that increasing the estimated magnitude serves to accomplish is to degrade
pogo estimation. Resulting position accuracy is not improved. It was felt that tuning the filter
(varying the dynamics noise and/or measurement noise used for the filter model) may assist in
improving the pogo estimation accuracy. A scaling factor was applied to the pogo process noise
strength in the filter (which was established to the same value as the truth model) to determine
whether better tuning would reduce the mean standarcl deviation of actual errors. It was found

that the best scaling factor to use was unity (i.e. tell the filter what true conditions are).

5.32.5 Plume Pogol/Atmospheric Jitter Iiteraction. The preceding analysis shows that
pogo is less difficult to estimate than jitter, In fact, the presence of the jitter model seems to be

the dominating factor in how accurately the filter estirnates position. If the filter model includes
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jitter estimation, the limiting factor on position accuracy is directly dependant on how well jitter
is estimated. Analysis does not indicate that there is any major degrading type of interaction
between the pogo and jitter models. Atmospheric jitter estimation accuracy did not degrade when
the pogo model was introduced (simulations 4 and 9 vs simulation 10). On the other hand, pogo
estimation improved when the atmospheric jitter states were added to the filter (simulations 6 and

8 vs simulation 10).

5.32.6 Sensitivity to Different Plume Pogo Conditions. This subsection presents
observations based on analysis of the nonlinear eight-state filter used in simulation 10 from
Table 5.2. A ten-run Monte Carlo analysis was performed on the filter for each of the six pogo
conditions listed in Table 5.3. In each case, the filter was tuned for the proper pogo conditions.
Inspection of the plots in Appendix D shows that all the mean errors in ihe position states were
approximately zero. The runs for pogo conditions 1 and 3 show that the x position mean error
may be slightly negative (on the order of -0.04 pixels), but this could be a reflection of an
insufficient number of Monte Carlo runs. Under all pogo conditions except number 2, the x and
y position errors were the same: zerc mean, filter-computed standard deviation 1o » 0.19 pixels,
actual standard deviation 1c » 0.19 pixels. In other words, the filters appear to be well tuned.
Pogo condition 2 is the exception. Position errors were zero mean and the filter was well tuned,
but 1o for x-axis srrors was about 0.34 pixels and 1o for y-axis errors was about 0.53 pixels.

This implies that slow oscillations of large magnitude are the most difficult to estimate.

As with position accuracy, estimation of atmospheric jitter was the same for all pogo

conditions. Atmospheric jitter mean estimation error was zero, with filter-computed error and
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actual standard deviations of about 0.25 pixels (the same as for the best estimation of the linear

filters).

Note that the upper plots (figures (a)) in Appendix D are the mean over 10 runs as
opposed to mean * 1o. If the truth model initial conditions had been randomized, the mean could
be zero for all time, while a steady-state error standard deviation (not shown in the plots) in
consonance with the pogo process 0,2 would be achieved. Initial condition randomization should
be accomplished for more realistic simulations. It is suspected that the filter may be fairly well
tuned but randomization of the initial conditions would allow a better performance assessment.
Also note that there is an apparent anomaly on the pogo offset plots for pogo conditions three
through six -- truth model oscillations die out vs maintaining the o, of Table 5.3. This actually
is not an anomaly and shounld be expected, since the mean pogo value should avpropriately die
out (as mentioned earlier in this paragraph). The plots appear with a nonzero mean because the

initial conditions for magnitude and phase were established tc identical values at for every run.

‘Table 5.4 Pogo Error Statistics for Different Pogo Conditions

Pogo Mean Error Filter Computed o Actual o
Conditiop

1 I 0 0.10 ~ 0.100
2 | 0 0.50 ~ 0.500
3 0 0.01 < 0.005
4 0 0.10 ~ 0.100
5 0 very small very small
6 0 very siall very small




As previously mentioned, if the initial conditions were randomized, the pogo process would have
the appropriate zero mean and standard deviation from the start of the run. The upper plots for
pogo condition should not be misunderstood, since they could be misleading without the

randomized initial condition and the + 10, traces.

Plume pogo estimaiion statistics varied, depending on what condition was in existence.
Table 5.4 shows the approximate statistics for the pogo states of the filter tuned for differing pogo
conditions, obtained off the plots in Appendix D. Note that the errors become negligible when

the pogo oscillations are at the highest frequency of 10 Hz.

5.4 Summary

This chapter presented the procedures, filter models and results of the stochastic
observability tests, The tests proved to be inconclusive due to numerical precision difficulties.
Section 5.3 explained what filter configurations were subjected to Monte Carlo analysis with
MSOFE and the results of the performance analysis. The accompanying plots for the linear
Kalman filter discussion are contained in Appendix C. The plots that accompany the description
of results for the nonlinear filter tuned ior alternate pogo conditions are contained in Appendix
D. An exhaustive run by run description of the plots is not contained in this section, vut the plots
are included so that the interested reader may scrutinize the plots further in orde: to draw their

own conclusions.




VI. AFIT Elemental Filter Analysis Procedures and Results

6.1 Introduction

The software simulation of the real world, measurement generation, enhanced correlator
algorithm and various Kalman filters have been developed at AFIT over the last 14 years [31].
The truth models used to simulate the real world, and the generation of the measurements for the
tracking filter, are described in Chapter IIl. A detailed description of the nine-state dynamics
model and the measurement model of the filter which is analyzed in this chapter is contained in

Chapter IV.

This chapter presents the process used for analyzing the elemental filter in the AFIT
software. Recall from the objectives in Chapter 1 that the fundamental goal of this portion of the
research was to combine the two filters (one for tracking the center-of-intensity of the target/plume
IR image, and one for estimating the offset between that center-of-intensity and the center-of-mass
of the missile hardbody) developed and analveed by ths previous three researchers, Eden, Evans
and Herrera [8,9,14], into a single filter that also incorporated estimation of the plume pogo. The
intention of this goal is eventually to determine tuning constants for a series of filters, each of
which is tuned for optimal performance when exposed to different pogo charactcristics (in this
instance, rms amplitude and frequency of pogo oscillation). That series of filters would then be

used to form a multiple model adaptive estimator for this application.

The following sections describe the perforinance delivered by an elemental filter tested

against nominal pogo conditions. The associated performance plots, displayed in Appendix E,
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reveal that there may be errors in the software causing inaccurate simulations under certain
conditions. Thesc potential errors, their effect on the simulation, and preposed solutions are also
described in the ensuing sections. Although numerous runs were made under many different
conditions, a single ~un was selected for Appendix E that contains all the necessary salient features

found throughout all the runs that will be addressed in the detailed analysis.

The elemental filter which produced the results described below contains nine states and
updates the state vector from two separate sensors. The first update contains plume centroid
position information from the FLIR. Raw FLIR data is processed through the enhanced
correlation algorithm and position of the plume centroid is presented to the filter in terms of two
offsets from the center of the field-of-view corresponding to FLIR plane x- and y-axis coordinates.
After the filter performs an update to the state vector, a low-energy laser sweep is initiated in
order to obtain a measurement of the center-of-mass location relative to the plume centroid. The
sweep is oriented to start at the estimated centroid location, calculated from the filter’s state
vector, and to intercept the hardbocy along the velocity vector, also calculated from the state
vector. The Doppler frequency shift characteristics in the LEL return are exploited to determine
the offset distance of the hardbody center-of-mass from the plume center-of-intensity along the
velocity vector. The Kalman filter then uses this measurement to perform a second update before
estimating the position of the plume centroid and center-of-mass at the next measurement period.
The FLIR plane is shifted in order to center the FOV on the centroid estimate at that next sample

period.




6.2 Performance Analysis Results

Appendix E contains selected plots which depict the performance of the elemental filter

for a cingle simulation of five Monte Carlo runs with nominal pogo conditions, The filter pogo

gain constant, K., is adjusted to reflect the desired pogo rms amplitude of 0.112 pixels (i.e., the

filter dynamics noise strength is set equal to the truth model’s). The other tuning parameters and

simulatiou conditions are listed in Chapters IIT and IV. Table 6.1 lists the performance statistics

associated with the plots. Two different types of plots are contained in the Appendix E. The first

type directly compares the velue or the filter estimated state to the true state. As in the previous

appendices, the solid line is the true condition and the dashed line is the filter estimate. The other

type of plot contains five traces; these are the statistics plots explained in Appendix B.

Table 6.1 Time-Averaged Error Stetistics for Elemental Filter (Nominal Pogo Conditions)

[ STATE—L MEA-I:I_ MEAN— STD. DE‘;/. STD. DET
ERROR()) ERROR(1,*) a(t) o(")
X POSITION -0.489990 -0.488290 . 0.43488 6.43263
Y POSITION 0.748290 0.745320 0.41595 0.41270
X VELOCITY -0.194090 -0.188110 0.53733 0.53703

Y VELOCITY 0.287940 0.276900 0.53360 0.534;;——
X JITTER 0.024115 0.034851 0.40936 0.35582
Y JITTER -0.047987 -0.071015 0.45138 0.42079
POGO OFFSET -0.007040 0.006787 0.13381 0.13382
POGO VELOCITY -0.049104 -0.047486 0.81970 0.81876
= OFFSET -0.744800 -0.750030 0.92680 0.93146
x CENTROID -0.110370 -0.106100 0.52676 0.52670

Y CENTROID 0.099324 0.092069 0.82138 0.82417 h
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6.2.1 Position Estimation Accuracy. Estimation accuracy of the position is the primary
measure of overall filter performance. There are two important features that should be noticed
in the x and y position error statistics plots (Figures E.1 (a) and (b)). The first is that the filter
is not properly tuned for the position states, despite that fact that it was "told" the proper pogo
conditions to expect and also the fact that the optimal tuning parameters for atmospheric jitier,
determined in previous theses [17,38,47,40], were used. Since estimation accuracy of the other
states will affect the position accuracy, inspection of the other statistics plots shows that the poor
tuning is partially impacted by sub-optimal tuning in some of the other states. The other
important salient feature is that there is a8 nonzero mean error in both the x and y directions.

Possible causes of the biased errors will be presented later in the analysis.

6.2.2 Velc -ity Estimation Accuracy. An important feature present in the velocity error
statistics plots (Figure E.2) and all the other statistics plots (except for the plume pogo statistics)
is the transient during the first second of the simulation. The actual errors were off the scale of
the plots shown, so statistics were not plotted until after the beginning of the simulation. The
actual filter velocity estimate was initialized to the true velocities, so errors are zero at f,. A
frame by frame inspection of the velocity data showed that an unknown phenomenon is causing
filter velocity estimates to suffer an extreme transient in the first two to five frames before
recovering. The fact that the filter is able to recover from such a large transient in the velocity
state is an indication of robustness, despite its constant velocity miodel. The unknown anomaly
causing the initial velocity transient is also the probable cause of the initial transients visible in
the other states. The error statistics in Table 6.1 were accumulated from two seconds into the
simulation to the end, so they should be an accurate representation of the filter’s steady state

performance.
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Other than the initial transient, velocity tracking is reasonably good and filter estimation
tuning is close to optimal; a slightly higher noise strength may be beneficial to optimize the
tuning. Mean errors appear to be close to zero and exhibit no obvious systematic nonzero trends

that would require attention through tuning or modeling effc cs.

6.2.3 Atmospheric Jitter Estimation Accuracy. The next two figures (Figures E.3 and
E.4) show a visual presentation of the filter’s estimate of plume intensity centroid displacements

in both axes due to atmospheric disiurbances. Performance was approximately equal along both

axes. The errors don’t appear to be associated in any way with the pogo state plots, so there is
no apparent affect of pogo coupling into the atmospheric jitter states. As noted in the previous
theses [8,9,14,40], there is a distinct difference in filter estimated uncertainty immediately before
and after the update period, however, the difference in this case is on the order of only 50 percent
of the 1o estimate at £,;". Previous observations showed a difference of several orders of
magnitude [24]. The time-averaged filter 1o is about 0.25 pixels, but acrual errors exhibited
temporally averaged standard deviations on the order of 1o = 0.4 pixels in each direction (see
Table 6.1). These errors indicate that the filter is not estimating the jitter very well at all, since
the actual jitter process itself had a varience of 0.2 pixels® (or o = 0.447). The filter could
possibly track as well without any jitter model states at all. This observation is contrary to the
results obtained from the MSOFE analysis, in which estimation of jitter was not only possible, but

significantly improved filter performance when included in the model.

6.2.4 Plume Pogo Position and Velocity Estimation Accuracy. The two figures showing
the filter’s plume pogo offset position and velocity estimation performance (Figures E.5 and E.6)

indicate there is room for significant improvement. The bottom plot on E.5 and E.6 indicate a
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nonrandomized initial condition on truth model simulations of pogo (so all sarples show the same
phase, giving the sinusoidal mean motion that is obvious on the plots). This sinusoidal mean
would be rewoved if the initial conditions were randomized. It is then suspected that the
performance plots would indicate reasonably good tuning and performance. There is apparently
a nonzero initial offset in the filter estimate (Figure E.5(a)), however, the pogo offset should be
showing z-ro, as it was set in the software. A frame-by-frame analysis would be necessary to
determine the actual initial setting. There could be a large initial transient similar to the
observation associated with the velocity states. The initial estimates of the filter cause the pogo
position (and velocity) estimates to be out of phase with the truth model, and hence the major
contributor to pogo estimation errors. By the end of the 6.5 second simulation, the filter is
beginning to recover and reach steady state. The general trend of the plots shows that the filter
would probably be well tuned in a steady state condition. It is also probable that it would recover
more quickly if the pogo oscillation frequency were higher. This hypothesis is supported by the
MSOFE data shown in Sectiou 5.3.2.6 that indicates that higher frequency and lower magnitude
pogo conditions are easier to estimate. The corresponding plots of pogo estimation from the
MSOEE analysis also showed that estimation can be very accurate if the filter is in the proper
phase. The initial conditions of no pogo offset and zero velocity do not reflect conditions that
would ever exist in the real world and would be cause for concern about model adequacy if they
were coupled with small initial variances. However, use of large initial filter covariance terms
P, for pogo position and velocity would be imitative of the real world (symbolizing high

uncertainty of initial conditions), and mean values of zero for both states would be fine initially.

This simulation, however, is important in that one cannot expect the filter to receive the

proper initial pogo conditions and the filt2r should be able to recover from improper conditions.
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It . 1seful to note that recovery time for this model for these pogo characteristics is fairly
exter ve (over 6 seconds). This simulation also showed (as did the MSOFE simulations) that the
filter recovers from magnitude errors more rapidly than from phase errors. This suggests that
large pogo P, and Q values could be used for an initial acquisition phase to speed up the
transients. Then, the Q values used for this simulation could be used in track mode. Finally, the
pogo errors do not appear to be modulated in any way by the atmospheric jitter estimation errors,

indicating that there is probably no corruption from the jitter states.

6.2.5 Offset Estimation Accuracy. Figures E.7(a) and E.7(b) show the filter’s estimate
and error statistics respectively for the offset distance between the plume intensity centroid
equilibrium point and the missile center-of-mass. The plots clearly show that tuning of the filter
leaves much to be desired. Also note that there is a substantial bias in the mean error and that
the filter’s estimate is not constant, as it should be. Since the offset is modeled as a constant in
the dynamics model, the high frequency variations in the offset value a-e probably due to the state
updates from the low-energy laser measurement. It is suspected that much of the degradation in
filter peri srmance can be attributed to the offset measurement. The offset error contributes
directly to the bias in mean error previously highlighted for the position states (Section 6.2.1).
The justification for this conclusion is revealed by analysis of the centroid estimation accuracy.
The erroneous offset measurements are described and several possible explanations for the poor

offset performance are proposed in Section 6.3.

6.2.6 Plume Intensity Centroid Estimation Accuracy. Although position of the plume
intensity centroid is not explicitly modeled in individual states within the filter structure, it is

easily calculated from the state vector and is carried throughout the software simulation. In fact,

6-7




until this thesis, the filter position states defined the centroid location, since ail enhanced
correlator, tempiate generation, ané FLIR controller functions are based on the centroid’s position.
Because of the importance of the centroid location estimates, an analysis of the filter’s estimation
accuracy of them has been included here. The last figure in Appendix E shows that tracking of
the plume centroid has essentially zero mean. Since the current filter defines the target position
states as the missile center-of-mass, and they are calculated relative to the centroid position, the
bias in the position states (mentioned in Section 6.2.1) must be caused by the biased offset
measurements. There are no traces indicating filter-computed error uncertainty since the centroid
locations are not explicitly represented iu the filter state vector. Filter computcd covariance could
be calculated through use of e wansformations CP,C’, where y = Cx, = x and y centroid position
coordinates, however for this thesis, the ultimate measure of performance is determined by the
accuracy of the center-of-mass location. If centroid location tuning becomes an issue, it may be

advantageous to incorporate the transformation equations into the software.
6.3 Potential Problems and Proposed Solutions

This part of the chepter is divided into two subsections. 'The first presents explanations
of problems detected during the performance analysis of Section 6.2 The second section addresses
several miscellaneous issues that the author felt impelled to record for the benefit of future

researchers.

6.3.1 Specific Problems Revealed by Analysis. One can find reason to suspect many
errors in the simulation from analysis of the center-of-mass to centroid equilibrium point offset
plots. Recall that the measurement from the LEL was considered highly accurate when present

(a low measurement noise variance R relative to the dynamics noise strength Q). A frame-by-
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frame analysis revealed that offset values from the laser measurement did indeed appear to vary
more rapidly than expected (cven with pogo takes into account) and that there were possible
errors in the laser sweep routine. Both the bias and the evidence of noisy laser measurements
observed in Section 6.2.5 are reason to suspect that there are errors in the measurement generation

routines in the AFIT software,

The poor laser measurements lead one to speculate that a combination of events may be
occurring in the software. First, the bias may be a reflection of an improperly modeled Doppler
measurement. The Doppler measurement model used was developed and shown to generate
unbiased measurements successfully by Herrera in the previous thesis [14]. However, it may have
been implemented improperly in this research due to errors when transferring software code,
improper tuning (recall from Chapter III that the Doppler measurement is dependent on several
fa. - or any other misunderstanding of its implementation. The existence of the bias, which
is of L. same approximate magnitude and direction characteristic of the speckle return model
[14], indicates that the Doppler measurement model should be inspected again to ensure proper

implementation.

Another event that may be causing both the bias and the noise is the laser sweep/scanning
routine. The frame-by-frame analysis showed that there were extended periods up to one second
during which no updates were made from the low-energy laser due to a lack of intercepting the
hardbody. This high miss-rate was not in consonance with the 0.1 percent probability of miss and
benign Doppler return parameters used for the simulation. Also, during the course of running a
few other simulations, particularly those with larger pogo magnitudes, the simulation locked itself

into an endless loop inside of the sweep routine. There are at least two potential causes for this
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error; LEL sweep geometry, and FOV geometry. The first cause, laser sweep geometry, is highly
likely and was originally proposed by Evans [9]. It was the reason the LEL measurement routine
was upgraded from a simple single, scan routine to a series of scans forming the sweep. The
filter’s estimate of the centroid location is not exact, and therefore basing the laser sweep on that
information may still cause either a partial (only part of the hardbody is intercepted by the sweep)
or complete miss. When Evans developed the sweep routine, he optimized it for a high
LEL/Hardbody intercept rate without any plume pogo. It may be necessary to modify the sweep
geometry (perhaps a simple expansion of the sweep angle) to improve the chances of intercepting
the entire missile hardbody in the presence of plume pogo. An excellent detailed description of

the scan and sweep routines is contained in Eden’s and Evans’ theses [8,9].

In addition to erroneous measurements caused by sweep geometry, the poor intercept rate
may have been caused by the geometry of the FLIR tracking window itself (the FOV). The
increased frequency of problems when higher pogo magnitudes were tested leads to speculation
that part of the missile hardbody may actually be projected outside the borders of the FOV. Since
the FLIR controller seeks to center the FOV on the centroid, the FOV will oscillate along with
the plume, so the projection of the missile hardbody is what actually oscillates in the FLIR plane.
The plume pogo distance, centroid equilibrium point offset distance, and missile length may
combine during the sirnulation so that part of the missile hardbody projection exceeds beyond the
boundaries of the FLIR plane. Further frame-by-frame analysis and creation of more statistics

would be required to verify if this is occurring.

One ad hoc software patch that decreases difficulties caused by geometry problems (and

which was .mplemented in some simulations for this research) is simply to declare that the sweep
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did not intercept the hardbody. This patch prevents the simulation from locking into an endless
loop, but does not prevent a low intercept rate or fix either the laser sweep or FOV geometry
problem. A potential fix to the FOV geometry problem, if it is verified as being a cause of
difficulties, would be to utilize a larger FOV. This could be done by expanding the dimensions
of the tracking window to more than 8 x 8 pixels. Another method that expands the effective
tracking window is diagonally rotating the FOV (DRFOV) so that the velocity vector is aligned
at 45° to the FLIR plan axes. This rotation effectively expands the length of the combined plume
and hardbody that may be projected in the FOV and increases the chence of maintaining the track.
This method was successfully implemented and tested (with good results) by Rizzo [40], but prior
to the implementation of the LEL measurements and projection of the hardbody on the FLIR
plane. It may be advantageous to investigate using the DRFOV routines with the new elemental

filter developed in this thesis.

6.3.2 Miscellaneous Issues. In the course of this research, an inordinate amount of time
was spent becoming familiarized with the software. Because of its rapid development and
numerous contributors, much of the internal documentation (the only current documentation
available) has become outdated. This is complicated by the fact that the software has been
developed over a long length of time and has an extremely high number of possible variations.
Consequently, it has become a highly complex and admirable accomplishment, yet one that can
still be improved tremendously. The inherent modularity of the structure should be maintained
and perhaps even increased. By utilizing function modules and subroutines, the variations in
configuration are easier to keep track of and to implement. Some of the features of MSOFE, such
as common variables and user designated parameters, were incorporated into the software and

have made debugging and future changes to the model much simpler and efficient.
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Because of its rapid development, many errors were found in the software that did not
cause problems in previous theses, but were brought to the surface during this development. Chief
among these were some sign errors arising from the use of a right-handed convention for aligning
the FLIR plane-to-missile range vector. Although this would initially be a logical choice of
coordinate systems, it causes a discrepancy beiween the orientation of the truth and filter FLIR
plane coordinates along the y-axis (see Chapter III). Furthermore, once the initial projection of
the missile and plume are made onto the FLIR plane, all calculations and control functions are
performed in terms of that coordinate system. This necessitates extraordinary care and attention
to the signs of any calculations involving y-axis components. Use of a left-handed coordinate
system, so that the range is considered negative, would allow the truth and filter coordinate
systems to coincide with each other. This would greatly simplify the debugging process for sign

errors and make the code more efficient.

Since the currently implemented truth model was originally developed when only FLIR
measurements were available, the target dynamics states are defined in terms of the plume
intensity centroid. The offset between the intensity centroid and the hardbody center-of-mass is
hardcoded as a constant (not explicitly modeled) and the center-of-mass location is a derived value
calculated from the truth state vector. This definition is convenient when using a structure with
two independent filters (as in the previous thesis), but is inefficient for the development of this
thesis and also does not reflect reality, With the incorporation of LEL measurements, information
is now available to locate the true target of interest, the missile hardbody. For this reason, the
truth model should be revised so that the dynamics states describe the missile center-of-mass.
This would also necessitate modeling the offset in the truth model, as opposed to hardcoding it

to a constant. The revision should yield a more realistic and logical truth model which leaves
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more room for future embellishment, For example, the offset could be modeled as a variable or
unknown distance. Revision of the truth model will also bring it more into line with the structure

anticipated for future elemental filters.

Another residual of the original FLIR measurement-only structure of the truth model is
that the FOV, defined in terms of the FLIR plane, is centered on the plume intensity centroid.
As mentioned previously, this causes the FOV to oscillate with respect to the missile hardbody
(or vice versa, depending on how you look at it). Although controller delay times and servo
limitations were regarded as negligible in earlier theses (see Section 2.3.3), they may once again
become complicating factors that resurface with the new measurement, revised truth model, and
higher sample rate. It is probable that a much smoother signal would be delivered to the pointing
controller if it is directed relative to the hardbody instead of the centroid. By the same token, it
would be a logical step to revise the FOV to center on the estimated center-of-mass. This revision
would require detailed investigation of the enhanced correlation algorithm, template generation,

and template re-acquisition routines to ensure that they continue to operate as designed.

6.4 Summary

This chapter presented the resuits obtained from analysis of the AFIT elemental filter
simulation. A single simulation was selected and a detailed explanation of filter accuracy given
for each state. The figures shown in Appendix E indicate that possible errors still exist with the
currently implemented design. Explanations of those possible problems and potential solutions
were offered in Section 6.3, as well as a discussion of several miscellaneous issues surrounding

the AFIT simulation software.
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VII. Conclusions and Recommendations

7.1 Introduction

This chapter summarizes the final conclusions of this thesis and suggests areas for further
study. Section 7.2 draws conclusions based on the results obtained in Chapters V and VI. Section
7.3 enumerates topics that require further research either to resolve problems found in this thesis

or to further the development of the general ballistic missile tracking objective.
7.2 Conclusions

Numerous conclusions were drawn, based on the results of the observability tests, MSOFE
analysis, and elemental filter analysis. The conclusions contained in this section are summarized,

so the reader should refer to the specific sections in those Chapters for detailed disrussions.

7.2.1 Stochastic Gbservability Tests. The results of the stochastic obse.vability tests
explained in Section 5.2.3 were inconclusive. Six different filter structures consisting of different
combinations of acceleration, atmospheric jitter, and plume pogo states were subjected to the
observability gramian condition test with both constant target angle and general target angle
measurement models. In all cases, extremely large variations in the orders of magnitude of the
eigenvalues of the observability gramian matrix M, were observed, which would normally indicate
unobservable states, which is a manifestation of numerics problems. In addition, both negative
and complex eigenvalues were observed, . The inconclusive results are due to numerical precision

problems in the software and hardware used to conduct the test.
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Two approaches were attempted to improve the ill-conditioning of the state transition
matrix & and reduce the variation in the orders of magnitudes and associated numerics difficulties.
The first approach, reducing the sample period by 50 percent, had no significant impact. The
second approach was to apply a scaling matrix to the state transition matrix prior to computing
the system observability gramian matrix. This approach was successful in reducing the large order
of magnitude variation and yielded all positive and real eigenvalues of the observability gramian
matrix M. One could attempt to observe groupings of the eigenvalue magnitudes to gain insights
into relative observability of the associated states, but definite conclusions cannot be Jdrawn since
the variation in order of magnitudes exceeds the reliable precision of the software and hardware

with which the tests were conducted.

7.2.2 MSOFE Monte Carlo Analysis Results. Section 5.3.2 contains a detailed analysis
of the results from testing four different filter configurations under varying conditions and in three
different real-world environments. The primary objectives of the tests were threefold: first to
determine the relative estimatability of atmospheric jitter and plume pogo individually; second to
investigate the existence of interactions among the pogo and jitter states; and third to provide

independent verification of the jitter and pogo models outside of the AFIT software.

Sections 5.3.2.3 and 5.3.2.4 address the first objective and Section 5.3.2.5 addresses the
second objective. On an individual basis, either or both phenomena can be estimated if the filter
model is properly tuned to reflect conditions in tiie real world. In general, the best filters were
able to estimate jitter with an accuracy of 1o = 0.25 pixels, which is an improvement over the
jitter itself, which was simulated with o, = 0.45 pixels. This conclusion is important in that it is

contradictory to results obtained from the AFIT model in previous years and this year.



The various simplations also did not show any evidence of direct corruption of pogo on
jitter estimation or vice versa. However, the data clearly indicated that jitter has the dominating
effect on filter sensitivity. Filter models that included jitter estimation but not plume pogo were
able to compensate for unmodeled pogo errors by attributing the motion to the jitter states. The
converse case, assigning unmodeled jitter errors to plume pogo, was not successful. This was
especially true for cases of lower pogo oscillation frequencies and larger magnitudes. The results
described in Section 5.3.2.6 support the conclusion that the more difficult conditions to estimate
are slower pogo frequencies and larger magnitudes of oscillation. Finally, analysis of the pogo
statistics did show that pogo errors are impacted significantly by phase errors as well as magnitude

estimation errors.

7.2.3 AFIT Elemental Filter Performance. This thesis successfully developed and
analyzed the desired single filter that combined the independent "FLIR" and “center-of-mass”
filters used in the previous three theses [8,9,14). Chapter VI contains a detailed analysis of the
performance exhibited by the 9-state filter. The overall performance of the filter was not as good
as the performance demonstrated by the independent-filter configuration. It was originally
hypothesized that incorporation of pogo and all other states into a single filter, which utilized both
the FLIR and low-energy-laser measurements, should yield better performance. The degradation
in performance, however, appears to reinforce some of the conclusions originally proposed by
Rizzo four years ago [40]. The degradation may be due to either poor estimatability of the

atmospheric jitter, interaction of the jitter model with the pogo states, or a combination of both.

Investigation of the jitter estimation showed that, unlike previous AFIT filters, the

temporally averaged standard deviation in actua: jitter estimation errors did not vary significantly
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when taken immediately before the update (¢, ), and immediatcly after the update (4*).
However, the actual errors were of the same order as the jitter process unceriainty itself, indicating
that the filter was not estimating jitter auy better than if the jitter model states were not included
in the filter. The difference in results between the MSOFE simulations and AFIT simulations (and
improved jitter results in the AFIT filter) lead to speculation that there still may be a problem with

how the jitter is modeled in the AFIT software.

Since the elemental filter was not studied under differing pogo conditions, conclusions of
performance sensitivity to pogo corresponding to the MSOFE analysis were nct obtained. The
analysis of pogo estimation plots supported the conclusion drawn from the MSOFE analysis that
accurate pogo estimation was highly dependent on the pogo phase as well as magnitude. For this
reasorn, the pogo magnitude and velocity to which the filter is initialized affect the phase error and
how quickly the filter recovers. Use of larger initial uncertainties and noise strengths in the filter
stucture for the pogo states would speed recovery of the filter, and then the steady state values
immplemeried in this simulation could be utilized for steady state tracking. Additioaally, it is
hypothesized that the higher the pogo frequency, ithe more quickly the filter will recover. This
hypothesis is fully supported by the observation drawn from the MSOFE statistics that higher

frequency pogo is easier (o estimate.

Some of the most fruitful conclusions associated with the elen atal filter are derived fi
analysis of the filter's estimation of :  center-of-mas. to centroid equilibrium point offset
distance. The performance is much poorer thau expected, especially considering that it shiould be
a constant, and it is derived directly from the low-energy laser offset measurement by simply

subtracting out the estimated pogo. Two major characteristics of the  set error statistics, a large




bias in the mean, and noisy estimation values, yielded a plethora of pctential explanations and a

veritable bounty of recommendations for future research topics.

The remainder of the detailed elementa: ...cr analysis was expended in a discussion of
the possible problems in the Fortran code indicated by the large offset bias error and noisy
measurements. The magnitude and direction of the bias were characteristic of the bias in the
gpeckle return measurement model, so the appropriateness of the Doppler measurement model as
implemented for this research is suspect. Additionally, the rapid changes in offset value are
caused by a heavy reliance on accurate low-energy laser measureraents, when a frame-by-frame
analysis of LEL measurement data revealed somewhat less reliability than the programmed tuning
parameters. This reliability of the offset measurement may be a residual of a suboptimal
technique for intercc oting the missile with the low-energy laser, either caused by poor sweep

geometry or poor geometry with respect to the tracking window FOV,

Ti final analysis section of Chapter VI discussed several miscellaneous items dealing
with the software itself. The conclusions drawn in that section focus on upgrading the software
documentation and truth model tc allow more reliable and realistic simulations for future

researchers.

7.3 Recommendations

This section concludes the thesis with a number of suggestions for future research topics.
Some of the advice is drawn directly from the performance analysis accomplished for this
research. This type of guid.iice is intended to assist anyone who intcnds to continue from wheie

this research was icrminated. the other type of recommendations given near the end of this




section are morc general poizters that are intended to contribute to the general pursuit of the
ballistic missile tracking problem. The Recomnmendations section is organized in a parallel fashion
to the preceding Conclusions section. As with the previous sectiv.:, recommendations have been
generalized in the interest of succinctness. The reader is referred to the main body of the text for

specifics.

7.3.1 Stochastic Observability. These tests were inconclusive chiefly because
numerical precision limitations. It would not be advisable to attempt them again unless ai.
alternate approacl, perhaps with different algorithms, software, and or hardware are made

available.

7.3.2 MSOFE Monte Carlo Analysis. The initial implementation of the ballisiic filter
tracking moaels was time consuming, however many of the hurdles have been overcome. The
success of the MSOFE simulations indicates that it may be useful to continue its use to verify
independently and/or support the results gained from simulations in the AFIT software. The
original intent was eventually to perform simulations in MSOFE under the identical conditions
as the AFIT simulations. This goal is still desirable. The MSOFE simwations should either be
modified to reflect the current AFIT model, the AFIT model should be revised, or ideally some

middle ground should be sought based on direction from the sponsor.

If MSOFE research is to be pursued any further, the next major step in augmenting the
filter models would be to characterize the low-energy laser offs:1 measuremen:s and re-accomplish
the sen.itivity analysis for comparison to the AFIT simulations. Ultiinately, it may be possible

to utilize MSOFE to obtain approximate tuning paraineters for the elemental filters.




Since MSOFE is currently not capable of simulating a multisle model adaptive aigorithm,
it can only serve to verify the individual elemental filters out of the filter bank. if a shell enabling
MSOEE to be used 1n a MMAF simulation is ever developed, however, or if some other well-
tested and documented filter simulation program is ever made available that has the capability to
perform MMAF simulaticns, it should be investigated. Such software development is currently

being pursued at AFIT.

7.3.3 AFIT Elemental Filter Research. The successful esttmation of jitter using the
MSOFE models is contradictory to the findings from AFIT simulations. In addition, since
MSOFE did not indicat: any jitter/pogo interactions, it would be useful to implement a similar
series of tests using the AFIT software. Increasew nodularity of the AFIT software will make it

easier to accomplish simulations using different filter and truth modcls

Causes for the poor estimation accuracy of the offset state should be purtued. The results
of the Doppler model currently implemented should be compared to the results obtained by
Hertera 10 determine its appropriateness for this simulation. Once the Doppler measurement
model is verified to be properly utilized, an investigation should be accomplished to determine
the appropriateness of the faser sweep routine and the FLIR FOV geometry in the presence of
pogo. Au alternate laser sweep geometry and/or alternate FOV geometry should be investigated
to geterming if iraprovement in the offset measurement is feasible. Two simple suggestions are
simply to ¢xpand the sweep parameters (both angle and distance) and to enlarge the effective
tracking window by either expanding its dimensions or implementing the DRFOV routine
developed by Rizzo [40]. Whatever approach is pursued, the laser sweep routine should be

restuctured so thal it never goes into an endless loop.
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At this time, a parallel research effort toward more accurate tracking could be supported.
One branch would be to pursue the single filter model with states defined a5 in the elemental filter
developed in this thesis. The otaer viable approach is to continue the philosophy of the previous
research and intentionally io separate problem izito two separate filters, each based on the type of
measuremens available. Theoretically, the single filter approach should be ideal, since all states
can interact with one another as chey do in the real worid. However, since it is cvident that the
offset state is corrupting the other states in the single filter approach, the pogo should be

incerporated iato the two-fiiter scheme and its performance compared to that of the single filter.

The problems causing degraded filter performance should be investigated prior to pursuing
final tuning of elemental filters for a MMAF. The initialization procedures of the truth and filter
models skould be given special attention, since both the pogo initielization problem highiighied
in Section 6.2.4 aud the initial velocity transient in Section 6.2.2 may be repaired by the same
software change. One possible avenue to pursue is to investigate the iemplate shifting and re-

acquisition routines to determine whether they need (o be revised for the new model.

7.2.4 General Software Upgrades. There are three major revisions to the software which
shouid be consideied. The first revision is considered by this researcher to be an absolute
necessity. The second revision is highly desirable and the third revision, the most challenging,

also allows for the highest potential coniribution the gencial tracking problem.

The first revision addresses the fact that other errors in tie software may be embzdded
in the truth model or due to improper uign conventions in thc FLIR plane v-axis. The entire code
should be scrutinized for w .coessary or missing documentation or obsolete code. The internal

documentation should be brought up ic the present date, and some coasideration should be given
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tc a separate log or manual that contains specific hints not contained in the theses. As mentioned
before, incorporation of sorne the features of MSOFE to enhance modularity would also make the

code more comprehendible as well s more efficient to operate and debug.

The second revision involves modifying the simulation inodzl so that the truth and filter
state vectors coincide. They don’t have to be exactly the same, but fundamental states, such as
the target dynamics states, should define the same target in the same coordinate system. Careful
consideration should be given to the enhanced correlation algorithm and associated template
generation. Revision of the controller, statistics, and plotting routines should be fairly
straightforward. If ihis revision is accomplished, the researcher should also seriously consider
simultaneously modifying the controller to center the FOV on the missile hardbody and driving

the controlier with the ncwly detined target dynamics states for the cenier-of-mass.

The third revision is the most ditficult but holds the raost promise for flexibility and
power in future research projects. Until now, the AFIT simulations have been coded from scratch
in Fortran. Because of its longevity and widespread use, a substantlal library of verified and
trustworthy routines has been developed. However, the basic approach is still limited by the
extremely labor-intensive requirement of manual coding, debugging, siatistics calculations,
plotting, ad infinitum. The advance of technology in both software and hardware has greatly
simplified these time-consuming and error-prone tasks. It would be highly beneficial if the
simulation could be reaccomplished in an alternate software package. One potential candidate
would be Mathematica [52]. Mathematica is not only 2 well-integrated package that contains
much more powerful mathematical manipulations and programming to9is. but it would enable

researchers to accomplish all the diverse operations performed for this thesis within a single




package. There would be no requirement for a separate plotting routine or manuelly programnming
in statistics equations or even keeping track of matrix indices. Either discrete or continuous time
models could be progirammsd directly in state-space form and analvzed symbolically for
observability, controllability, etc, and statistics and plots could be created without eny importing
or exporting of data. As poted at the beginning of this "soapbox" lecture, such a major revision
would be extremely challenging and wouwid require many hours of verificetion and comparison to
the current simulations to ensure correct operation, This writer holds the conviction that, in the
long run, this recommendation bears the highest potential for advancement of the tracking problem

and learning experience for future AFIT graduate students.
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This Appendix explains fiow the staiistics listed in the thesis and plotted in the succeeding
appendices were determined. The equations for the statistics and the data used io plot thein are

discussec.




The performance of the Kalman filters used in this tilesis is evaluated using multiple
Monte Carlo runs (five for the AFIT simulatious and 10 for MSOFE simulstions). A Monte Carlo
analysis involves collecting statistical inforrmation generated from simulating samples of stochastic
processes [21]. Ten Monte Carlo runs are generally considered sutficient to converge to the actsal
statistics that would result frozn an infinite ramber of ruas [9,24].  After collecting N samples of
truth mod=l and filter model daca for each of N Monte Carlo runs, the wue error statistics can be
approsimated by computing the samoie mean error and error variance for the N runs. The sample

mean error and error variance are computed by:

+ N
1 )
E(t) = 'ﬁz:l [xrrum,(tl) - 'fﬁllﬂ'_(tl)] (AL
o) = ] ; x @) -2, @) - N E*q) (A.2)
Y, NoT &~ l truth, ' fileer, "1 l N-o1 1
wkere
E:‘(t,) = sample mean of the eiror of inverest at time
oX(t) = sample error variance at time 7
X {t;) = trvth 1aodel valee of the variable of interest ai time ¢ during
simulation n
Y t,) = filter estimate of the variable of interest at time # during
simuiation n
N = puinber of Monte Carlo runs

The statistics are calculated before the measurement update at (#) and afier the update at
(¢"). In the performance plots displayed in Appendices B through B, the statistics at each instant
in tme are plotted together; that is, the scatistics before ano after the measurement vpdate are
ploited on the same time axis. They are reduced further to obtain averege scalar values over the
tume of the rux, by temporally averaging the mean error and standard deviation (o) time histories

from tvc seconds into the simulation until the end. The first two seconds are rot used to ensure
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that the data reflects only steady state performance {9]. The errors are measured in units of pixels,
where a pixel is 15 prad on a side (approximately 3 meters at a distance of 200 km for the

MSCEFE analysis and 30 meters at a distance of 2,000 km for the elcmental filter simulations).
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Two different types of data plots arz presented in Appendices C through F to assess the
performance of the center-of-mass filters employed in this thests. The first type of plot, the state
comparison plot shown in Figure B.1(a), provides a direct coinparison of the filter estimated 2ad
true value of tiie state. For these plots, the cnsemble average (over N Monte Carlo runs) of the
true value of the state is shown as a solid line. The ensemble average value of the filter estimate
at any instant in time is shown as a dashed line.

The secoud typs of plot, the error statistics piot shown in Figure B.1(b), provides a
measure of the tracking peformance. The plot shows the mean filter error, averaged over the N
Monie Carlo runs at each instanc in time, for a state or variable of interest. Ia addition, this type
of piot displays the actual 1o (standard deviation) centered on the mean, or mean £ 1o curves.
They are the two dotted lines thet surround the mean curves. All the filters for this thesis were
designed to assume zero mean errors iu all states, so the filier computed estimate of standard
deviaticn is plotted relative to the abscissa. The legend for the symbology in the error statistics
plois is shown here.
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This Appendix contains the average states and crror statistic plots for the MSOFE
simulations listed in Table 5.2. Data coliection and symbology depicted in the two types of plots
contained in this appendix are explained in Appendices A and B. ‘The state comparison plots
show the eusembic average truth state over the 10 Monte Carlo runs compared 1o the same
statistic for the filter estimate. The error statistics plots represent the error mean and mean 1
standard deviation values in pixels (or pixels/second for velor ty). of the errors between the filter-

estimated and true state.
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This appendix contains the average states and error staiistic plots for the MSOFE
simulation #10 using a general angle model (nonlinear measurement update) for the diiferent
plume pogo characteristics listed in Table 5.3. Data collection and symbology depicted in the two
types of plots contained in this appendix are explainzd in Appendices A and B. The state
comparison plots show the ensemble average truth state over the 10 Monie Carlo runs compared
to the same statistic for the filter estimate. The error statistics plots represent the error mean and
mean 1 standard deviation values in pixels of the errors between the filter-estimated and true

state,




x (pixels)

5000

LENR BRI

4000

[EPRUROREY. S

3000

T
H
H
H
.
.
H
'
H
h
)
1
f
1
1
1
)
‘

2000 - R S— foeeeenene / ------------ e :---truﬁ:h--—--w
| beeed filter

1000

T 1 071

_1000 11.,_LJLn.4;1lE||n| 441:1:_1;11 L]_J_JJ_J_L!JJJALLIE

0 i 2 3 4 5 6 4 8 ?) 10
time

(a) X POSITION - Filter #10,Nonlinear, PC#1

. %”’/-T\j\
BT 1 2 :

'
kS N IO NS S (Y

x (pixels)

' i
i i ' i : . ‘ .
_5 § NN N NS T N SN TS R L Y TEVUNY Ay N S S U WY N VO O 3 IR S VRS Y W G NN U TR VNN TN Y TNUN Wy SN SNy WU U G T SO [N NORY S S |
.

0 1 2 3 4 5 8 7 8 9 10
time
(b) X PCSITION STATISTICS ~ Filter #10,Nonlinear, PC#l
Figure .1 Pogo Condition #1, Simulation #10, General Angie, X-Position

D-2




1000

[ [ ) 1 ] + ¥ ] ]

- 1] + i ' 1 ] [} .

................................... B e S G Y DS
- - ; ¢ t , ’ ¢ - . 4

L1 T [ SR DN SN S

foormaa ] L qesaemenaaa

SRR 4 filter

L 0 B I
i
.

-4000

y (pixels)

-5000

TTIAF TV T
.

T 1T

ST 1071 ) SRS FRNSSSPSS NSO SN NN S S A—

N

- H ' ; H H H H
_8000 (TR TR S U NSO 0K N SNV VS JOUES VO OSSN NS0 N S AT O W S0 VY U0 WU P T T S T AN T YO W0 TN (Y WL UYWAY SO S WO W N ¥

0 1 2 3 4 5 8 7 8 9 10
time
(a) Y PGSITION - Filter #10,Nonlinear, PC#1
.5

y (pixels)

v
.
i
|
H
.
.
H
-.2 -
L] 1
)
|
4
H
i
-.4
. v
i
.
H
'
i
5 : !
. : : 1 H | 1 h |
_,6 HOSUE P S TS TG SO SO S YU T S TR D SN TS SO N 1O R SN0 N DR SOV S S PO ET U Yt ST ST S WY U D W S R S SO R
.

0 1 2 3 4 5 6 7 8 9 10
time
(b) Y POSITION STATISTICS - Filter #10,Nonlinear, PC#1
Figure D.2 Pogo Condition #1, Simulation #13, Geueral Angle, Y-Position

D-3




EE LR SR S Arfusts comyapp

: ' . .
FERPER . Lo s ran ey i

1l

' .
.»—_.mhp

HS

' '
WS VD0 S RS VRN SO TR TN TR R T

{syexid) xa3nf x

w0 N - Q0 = N ¥ 0

o

PC#1

ineear,
X-Atmospheric Jitter

ilter #10,Nonl
, General Angie,

- F

JITTER STATISTICS

(b) X

Figure D.3 Pogo Condition #1, Simulation #10

D-4




(siaxtd) as1

time

PC

ear

n

li

Non

Filter #10

ER

(a) Y JITT

(staxid) zamif £

¢

tim

,Nonlinear, PC#1

iter #10

s
1
&

- F

(b) Y JITTER STATISTICS

Figure D.4 Pogo Condition #1, Simulation #10, General Argle, Y-Atmospheric Jitter




10

] ﬁ c
m : i 1 u T R
' : 1 IR B Sk
: : : L) o
m ; ] B A
L R L\ i o ,
: ! - -y -
£ = ] > 3 3
-~ St H : ] &) « A
: : ' ] =
[T D B - T g S
. . H h -
LoE T B ER:
_ 3 ; i “ : g c =
.......... F R Z 3
| o o B
1 o — M
: I
..... ; ; 1o 0 =
] < s 3
T [
] ¢ 3 © M o]
....................................................... E= EE s
-d e - *
o I §
- =
= “w s A
2 O B
! £ 9
2
T rd
£ < §
n = =
3 @3
) =~ O
o @ B
O B A
(o) ey
A . c 2
—~ o C &
K — e+t wvaw QY&
R a -
sjaxid) oZod “
(stex1d) oSod (stoxid) 8

illlli




x (pixels)

5000 F § ;
2000 Lo g ____________ g
2000 | 5

1000

S — S | : = | ; tratho

'
- »
. )
B filter
1 '
! ' . | | | :
......................................... AL SIEETTIEEPIS SUPRPRPRRY
1 ' ' 1
! H ! Prmrmesomamied '
\ i i ]
; ; 1 errar
‘ ' . ) )
i i H ‘ i '
' 1 h
V '
' ' '
i i ! i
i ) i
1 i 1 '
1 - T T T
H ' v B v
- i ' h '
i ) ' ' '
i i : . '
- i i V ' 1 .
' ' i i
1 H '
- v 1] [} '
H ' ' '
) ' ‘ :
' \ 1 . ' ' |
KUY IOV SRS VUG SUUY UUY N0t TN SUUR SN, O S (RN NS WHOPN VPR IV YAV JOVD SUPW WU VUIUE SIUUN [ S SN VAORN SN O (RS JUENN (VU NUUr WA SOV USRS S N G S WO SO W00 SO S |

-1000
0

(a
N

1 2 3 4 8 6 7 8 9 10
time
) X POSITION - Filter #i0,Nonlinear, PC#2

x (pixels)

L
9

1
'
‘

f ' ' ' ' ' y ) |
(DR TOUR WU SN0 TN WA SRS SO (YpLy TR WA NS YRR VUL SO VEC SN SR SR SR (NN WA SO G0 W (S SR VN SN WU DAY SR NN N JUN N B SR WO S G SN I G U |

1 2 3 4 5 6 7 8 9 10
time

(b) X POSITION STATISTICS -~ Filter #10,Nonlincer, PC#2
Figure D 6 Pogo Condiiion #2, Simulation #10, General Angle, X-Position

D-7




1000

0 fo
~1000 , ’ 5
~2000 [ -

-3000 [~ SRR S f
-4000

y (pixels)

-5000

IR ERE] LEN R S IR AN ]
.

—600G Foo i

—%7000 [ S R S

1 [

...8000;LL..;.J..JL,,,,,,UE”“ . 3

time
Filter #10,Nonlinear, PC#2

(a) Y POSITION

8
.8
4
2

1s)

o

1Xe

(p
{
oAb}

y

— )
. ) )
! |
H |
H
bt
o
1 ; L
— B .- 4 H - -
. 1 e 1 Pt
- H H 4
4 H A et
- J . Ve
! 1 ; :
— H H “
! ; ! ! .
— : + f 4 .
L. S St AU SOOIt PO
. 1 ] ' M
- H ! ! .
1 ' 1 H e
| ! ! : i
N '
; ; ! ! H i ! H
—1 T T N0 S U WA RN UK S T S | T S S b s L L L a4

0 1 2 3 4 S 6 7 8 9 10
time
(b) Y POSITION STATISTICS - Filter #10,Nonlinear, PC#2
Figure D.7 Pogo Condition #2, Simulation #1J, General Aungle, Y-Position

D-8




h
h
S RN RN O Y T U S5O U OO Y Y S Y

.AL____k.__

{stexid) s}l x

«
!

~

0

ER

(a) X JITi

(s1ex1d) aajif x

rae e

i 1
H : !
' ' H
: '
. '
IS S NN RO EEAPURIY VS O S T TS S NN H WY VY G

10

ime

t
Filter #10,Nonl

PC#2

inear,
-Atmospheric Jitter

¢

R STATISTICS

(b) X JITTE
Figure D.8 Pogo

X

General Aagle,

Condition #2, Simulation #10,

D-9




N
Mnr
[3]
=
]
N - .2
I = 5
O a
a. v g
[~
- “ = 5
< b 1~ g <
o - ] c >
E| | ol = BT | Z4
. [ PR —— Y og
g 19 <
) i RS
N- u erm
S ; 1 =
e e e e - i e . [N 10 EZ S
ES ] e iion B
i & 2
Mol R S e T * 9
= ] g a
G | &3
Q E
i 19 m&
[+ ] g™
3] < &
= 1N 28
' ] n 3
— <2
- ] 8
...................... 1 e G
> 1= &3
...... s &0
. = ; : : | —_ ] - 2
{3 By =t . Lt sdi s it tataigy O {av M ) “ "
€ DN~ O e MM ¥ O emm o ¢ N O .. o a
Y e e -~ ® @ ¥ ¥ O N v o @ =L
i Coor T N R g
syaxid | | | 2 g
(stexid) zoynf £ (stexid) a3yl £ - =




8
.6 -:."‘.\' .:‘-‘",.. b e eeaaninan L eavecamanns S AP TP I )
- 4 P
tn .
[3) N
- 2 b
& ;
o) 0
hn -
o) -
B _.2 ._. ............
SR S—
_,,.6 ;Jlll l1n|é|4x..x~i.LgJ L“’i’j’}'\!"‘f”?x|44i1|¢14€||4 Lillll Loadecrhmak
0 1 2 Q 4 S 6 7 8 9 10
time
(a) POGO OFFSET - Filter #10,Nonlinear, PC#2
.8
)
I3
X
&
o
ag
a
-4 [' ........... P
_'6 E;“_—_ --"-é- ->.7-._"§7-
-8 L i e
0 1 2 3 4 5 6 7 8 9 10
time

(b) POGO OFFSET STATISTICS - Filter #10,Nonlinear, PC#2
Figure D.10 Pogo Condition #2, Simulation #10, General Angle, Pogo Offset

D-11




x (pixels)

5000

4000

3000

2000

1000

-1000

3

x (pixels)
]

R
oY)

|
o

-.4

[ DU

- ; : JE A Hhon— errqr

- N

_I i L el é H bl 1 E 1 il 1 (! ;4_1_4_J U R Y T I J I | i o A 4 i 1 i " L J: L 4 ovatmarads

0 1 2 3 4 S5 6 7 8 9 10
time

- Filter #1G,Nonlinear, PC#3

time

6

7

(b) X POSITION STATISTICS - Filter #10,Nonlinear, PC#3
Figure D.11 Pogo Condition #3, Simulation #10, General Angle, X-Position

D-12




1000 .
0

LIRBLR

~1000

—2000 [ ,\} .......................... Lenmiees s pecaseaseras-feccacereecs S S

BTS¢ T+ N RSOt '

LRI NN
://
H
H
.
N

T ¥

-~4000

y (pixels)

T T s itTTa7T

-

-5000

—-6000
~-7000

'
et mmgmmm e m——gem——- m o g———

-80060

o) 1 2 3 4 5] 6 7 8 9 10
time
(a) Y POSITION - Filter #10,Nonlinear, PC#3

y (pixels)

- P ' ' i i 1 v
— ‘;_ WIS SN S TS T O A UV VU U0 GRS LY SO SO SN S WA U0 (N T S WA A JEOS WU VRN TOUY SN OO TN SN W TR N T SO0 WS YUY SN VOO0 SN YN U VR O
.

0 1 2 3 4 5 6 7 8 9 10
time
(b) Y POSITION STATISTICS - Filter #10,Nonlinear, PC#3
Figure D.12 Pogo Condition #3, Simulation #10, General Angle, Y-Position

D-13



od
A e S
.3.' ...........
)
Q 2
)
‘E‘ -1 '.
[ ] -
o -
- »
) o1
apmd -
- o b 1
. N i
-3 Fee ;
"0 1 2 3 4 5 8 7 8 9 10
time

(a) X JITTER - Filter #10,Nonlinear, PC#3

x jitter (piaels)

time
(b) X JITTER STATISTICS - Filter #10,Nonlinear, PC#3
Figure D.13 Pogo Condition #3, Simulation #10, General Angle, X-Atmospheric Jitter

D-14




| truth
i beneaes 4 filter
,‘ = o Lmeneeeneand
_— ' ' 1 1, MR i
] o ! A by
D + ...".. -1 BT ' I i.: R. 4. ...;.. el
» { :* I . . g l- ‘E
« ot ' H iy X « WY }
[~ 9 AN g ‘Ol Al Iv'w‘ : g
N l 1 ﬁr i HP il
e (F'B AR e i
v I' - ( -. _-| B 0 K -‘: .........
e ; I I i
= | Iﬂ i |
L Y S R R S T 1. | | T RTLITET X PRORE & PR n e | P riy--- ---E - o L
> b | ' '
-. -.IJ 1 L I T | L;J 1 L‘l~_]I b, L i L IJ;J;LJ 1 N i | P WY B 3 E Joods | i 1 dirnal Lol |

0 1 2 3 4 S 6 7 8 9 10
time
(a) Y JITTER -~ Filter #10,Nonlinear, PC#3

'
1
1
1
1
V
b e mmcec o bccemecmasmabasn s iismaelcndmaemaeaebaereec e
|

|
|

; ]
.....................................................

y jitter (pixels)

' ' : ' . '

- H H | ‘

_8 TSNS TR N SR U TS NN TR S S TN VS WA Sl K TOUS WU N WO (N0 VU TR SN NN [ T N S
2

0 1 2 3 4 S5 6 7 8 9 10
time
(b) Y JITTER STATISTICS - Filter #10,Nonlinear, PC#3
Figure D.14 Pogo Condition #3, Simulation #10, General Angle, Y-Atmosphcric Jitter

D-15



pogo (pixels)

5 10
time
(a) POGC OFFSET - Filter #10,Nonlinear, PC#3
08 :
~, i
.06 :"__\“ """""""""""""""" “ """"""
.04 o :..?.‘.-.-..,‘. 4...<......;. ............
0 f
i .02 :
TR ) Z
3 ) j
g =.02 ; ,
. |
-.04 | | ;
B '.1:- '
-.08 ,-,_,’P/ ............
—0f b b i e
G 1 2 3 4 S 10
time

0 1 2 3 4

(b) POGO OFFSET STATISTICS - Filter #10,Nonlinear, PC#3

Figure D.15 Pogo Condition #3, Simulation #10, General Angle. Pogo Offset

D-16



x (pixels)

5000
4000 jwmmﬁ ............ f

3000

2000

1000

| " LI i error

) H , H i | ; ;
i 1 ! H ) 1 H H i
_1000 FURT TR G WS OUS TV SN NN SURMPYR TR N JUNS WA TN SO0 JEU0 DU VOUR OO TORSE NN VAN TN S TS TR0 WK SR N S N S TR SO W0 Y NUNS TN U WOt S S0 S S0

0 1 2 3 4 S 6 7 8 9 10
time
(a) X POSITION - Filter #10,Nonlinear, PC#4
.3

x {pixels)
i

|
ne

}
]

| i H ' : . ' '
F ISR WO S VUUE A VUOY NOUNK WA TR WA SN VAR O U U UL NG00 RO AP SN TO0Y DOURY T N SN NS WY VO AU UL N U YOS O N NV WY S WS S S S N

t
_.4 s 14;5
0 1 2 3 4 ) 6 4 8 9 10

time
(b) X POSITION STATISTICS - Filter #10,Nonlinear, PC#4
Figure D.16 Pogo Condition #4, Simulation #10, General Angle, X-Positioi

D-17




y (pixels)

1000 —— 5
o |

T

~1000
-2000
~3000 [ ; ............. :

Tty P ET TR0
. .

~-4000

~5000

—-8000

LIRSS

—7000

BRI

\ 1 | i
N TOROOU SOUURY POUY N SN N NN SN DU SRS TN USSP R S VO T A §

-8000

o

2 4

time
(a) Y POSITION - Filter #10,Nonlincar, PC#4
.4 N ; : : :

y (pixels)

-.3

. | i : 1 ' '
- i : i : 1 .
4 ek Ld e . [ YK S T IO D00 WY AR NS 00 SO0 SRS NN S SH SO0 SRR DU S WS AN S JUUY SOWS VAL ST TU TR0 S MY S SO T
N

0 i 2 ) 4 5 6 7 8 9 10
time
(b) Y POSIiiun STAT!» ... - Filter #10,Nonlinear, PC#4
Figure D.17 Pogo Condition #4, Simulation #10, General Angle, Y-Position

D-18




o
TTL e

B

x jitter (pixels)

'
' ' ' H ' ' ' ) 1
ISR WA YOO SN YOI WA TU0C WA NS YA RS TN YWURN [OUNE NN U NN TN NS T U TUUN WU GV VU (U U U RN SN NOUNE SO0 NOUN Dy PR WU UVOR U S S S T

0 1 2 3 4 S5 6 7 8 9 10
time
(a) X JITTER -~ Filter #10,Nonlinear, PC#4

x jitter (pixels)

0 1 2 3 4 5 6 7 8 9 10
time
(b) X JITTER STATISTICS - Filter #10,Nonlinear, PC#4
Figure D.18 Pogo Condition #4, Simulation #10, General Angle, X-Atmospheric Jitter

D-19




' |
1 i H i
RS R WS VOSSN OO SO N T WY N JU VU 10 S N0 T W D g W | § O W W N N S

i
WO I S T I T Y TN §

-
o 1t 2 3 4

time

9 10

y jitter (pixels)

time
(b) Y JITTER STATISTICS - Filter #10,Nonlinear, PC#4

Figure D.19 Pogo Condition #4, Simulation #10, General Angle, Y-Atmospheric Jitter

D-20

el



v

——— truth

pogo (pixels)

...................................................

' '
= r 1 b [l B ] ] ’
__8 PR N S T I S SR ST VUK TOUN SO HRU0 OU VU VOOV NN EUN IS FORE WY S SN U SN A HY AR DUV TOR VR0 YOO SO A Sy ) JUUUN ST R SN SN VU SV S N B |

s

0 1 2 3 4 S5 6 7 8 9 10
time
(a) POGO OFFSET =~ Filter #10,Nonlinear, PC#4
.8 : i i i i -

' '

' ' ) ' ) '

' » ' i ' '

& i ' ' , i ' 1

| ' h 1 i . ' '
e S

. v v I i ' I '

' ’ i I ' i H

- v ' ' ' ] i '

' ’ ‘ | ' i '

v h ' ' ) ' '

v '

pogo (pixels)

3

4 H ' | 1 1 ; h
B 1 H H
! H . i H ' H ) |
i . . : ' H \ i H '
L, i f ¢ | ' ' . . '
: : i :

...-‘4 S A0 g QG GG

3 H . H H | ! | .

. H ' ' s H h .
. . 1 H H . ' 1
1 ‘ i | ) H H ' |
H . . 1 H H H ' :
H | H H . H H H H
- H 1 H H | . ) i H
i 1 : 1 1 h : i )

- 6 ............ S S S NN [ Ot S NN SO
. H . | ! 1 H 1 1 .
_ . ) ! i \ H ' ) H
H : ' 1 H H 1 h
¢ ' \ } ' f | ' '
N 1
\ i ' H } i ) | .

8 el TS S SR ENS S0K TOUNS (UU0E UK VN T JU U HOUS T T S (1 ST TR WY VAT W) NS FURS N YOO TN TR AN TN T NN WA NN U0 SO0 UOOS YOS AU S WU S
.

0 1 2 3 4 5 6 7 8 9 10
time
(b) POGO OFFSET STATISTICS - Filter #10,Nonlinear, PC#4
Figure D.20 Pogo Condition #4, Simulation #10, General Angle, Pogo Offset

D-21




x {pixels)

5600

4000

T

3000 ...........

2000

............ E:........... ...t.ru‘%h

1000 | ............. e SRS SN SRR b,

1 2 3 4 5 6 7 8 g 10
time
(a) X POSITION - Filter #10,Nonlinear, PC#5

H
'
H
H

_1000 WIS SR T NN SN TR S0 S S WA S T U WAV IR VU SN NN VOUN TN T SN NN TN UHNE DUU D00 SO0 SO PO WA S N SO W)

x (pixels)

o
i ot

H LSRN

i i ' H
. 1 1 i ' ' i '
_4 TR YU T VAR SN T S S TN SN S SURY SN WU A0S I TN WY SO00 S S VA D0 WOV VRN TR DU SN NS N T PN SN S SHN TN OO TR0 S PR S S S U0 SRR SHU W |
.

0 1 2 3 4 5 6 7 8 9 10
time
(b) X POSITION STATISTICS - Filter #10,Nonlinear, PC#5
Figure D.21 Pogo Condition #5, Simulation #10, General Angle, X-Position

D-22




y (pixels)

1000 ———r—— s R S T
0 ' ' H : \

LR Y LR}

L

-1000
-2000 |

HE NI

-3000

Ces b I

T

-4000

-5000

VP EPTTTE O

-6000
—~7000

LHREOE R R R

' ' ' : H . ' H H
' H H : | 1 1 1 H
_8000 URE TR U U VO S5 WA N WU SRS SO AU U SUNC U0 SO GHOF WY VR SPINS WDRDS ST SO SIS SN S WHON ST SN0 WU (S S OO SNF WO [0 N SO N T SO N Sy O

1 2 3 4 S5 6 4 8 9 10
time

(a) Y POSITION - Filter #10,Nonlinear, PC#5

5 = = ; s s s : E

<

-
NN
TTTT T

y (pixels)

' ' i ' i ' '
YIRS VDT SO SN Ty N W VRTINS SN0 WOV VN [N U U T QN SR TN TOUNT SR YL AU ST TR PNV PN SUNC TSN M W S H VY DU

3 4 ) 6 4 8 9 10
time
(b) Y POSITION STATISTICS — Filter #!0,Nonlinear, PC#5
Figure D.22 Pogo Condition #5, Simulation #10, General Angle, Y-Position

D-23




T T T T

x jitter {pixels)

' l i i
i i i ) ‘
I | TSR I U S SN TN TN VRN DU SN S5O I VN G [ SO S T T T I I | TR OV SO0 JUUS GO BESY VO NN GO S T G W |

0 1 2 3 4 5 6 7 8 9 10

x jitter (pixels)

SN Y APUUUPS R SRRV SV RYAFII FPIFIS TS SPRETITE SUPRTI S S
0 1 2 3 4 5 6 s 8 9 10
time

(b) X JITTER STATISTICS - Filter #10,Nonlinear, PC#5
Figure D.23 Pogo Condition #5, Simulation #10, General Angle, X-Atmospheric Jitter

D-24




y jitter {pixels)

y jitter (pixeis)

.....................................

.........................

)
i ) ' i
FISURN N WS TN N U Y S U NN SN S NN N O TV S0 T BT

5 6 4 8
time
(a) Y JITTER - Filter #10,Nonlinear, PC#5

'
Lo bbd L )L

3

'
79005 TN QR N S0 S U |

0 1

||J|i||_‘__3__

9 10

2 4

o 1 2 3 4 5 6 7T 8 9 10

time

(b) Y JITTER STATISTICS -~ Filter #10,Nonlinear, PC#5
Figure D.24 Pogo Condition #5, Simwulation #10, General Angle, Y-Atunospheric Jitter

D-25




.06 ........................ prasasessons .................... ....... ;'"““"""'fﬂtaf .........

.04 |- SRR SO SO S ST e oo SO SO S

.02

o

pogo (pixels)

-.02

-.04

| i 1
: . i
i H 1
H I | ! 1 |
{ i | | | H
_06 SO W U WO Y S PR SO TN S Y VRN VU ST W S N W I dd b b e TR T A O 1
.
0 F 3

(a) POGO OFFSET - Filter #10,Nounlinear, PC#5
.08 F . :

.06 |

pogo (pixels)
o

time
(b) POGO OFFSET STATISTICS ~ Filter #10,Nonlinear, PC#5
Figure D.25 Pogo Condition #5, Simulation #10, General Angie, Pogo Offset

D-26




5000

4000

3000

2000

x (pixels)

k]
1
H
.
.
.
i
'
.
"
.
H
.
.
i
'
i
s
’
'
.
'
f
'
i
.
.
.
.
&
.
'
v
3
.
i
.
.
1
i
v
4
H
'
v
i
'
'
.
i
i
)
<4
'
.
.
.
H
.
»
.
4
'
i
1
'
»
)

1000

AN DL

LB L

_1000 JllllJJl.illIl)liLl_LJllLlilllLJlllLJLlLLi
0 1 2 3 4 ) 6 7 8 9 10

time
(a) X POSITION - Filter #10,Nonlinear, PC#6
4 . : .

-
2}

LR IS IR BN B

x (pixels)
o

.......

}
f
. :
.
a .
— -
. = ' 1
i H
' H
[~ ' ]
1 .
= | .
) ' |
— ' 1 '
—— b - : 1
. ‘ '
i i ! ; i i : : o
H H H H H ' H -t H
' | P g i
- H : |
- 1 ! H ' H ' ' 1
__4 P SN N TG U RN VU0 UK HURE VOV T MU SRR T HUR SNEOY A0S SOV P00 SV RV DU TRUOY WA SNV HANE S S S 1 fomdnd, bedede ot Ll
-+

0 1 2 3 4 ) 6 7 8 9 10
time
(b) X POSITION STATISTICS - Filter #10,Nonlinear, PC#6
Figure D.26 Pogo Condition #6, Simulation #10, General Angle, X-Position

D-27




1000 : . :
0

~1000 | \ ............. —

-2000 |

Ty T

T
.
1
|

LIR AR ML

-3000

LR RBEREER

-4000

]

y (pixels)

-5000 f
—8000 [-eeee

-7000 |

-8000 R B i N
(0] 1 2 6

time
(a) Y POSITION -~ Filter #10,Nonlinear, PC#6
4

3

[ S
i

y (pixels)

' i ' ‘ '
TN VOSSN N T S SN AN OO R S S VPR MU0 AU FOY Y SAOU U WY N S DAY S}

0 1 2 3 4 S 6 4 8 9 10
time

(b) Y POSITION STATISTICS - Filter #10,Nonlinear, PC#6

Figure D.27 Pogc Condition #6, Simulation #10, General Angle, Y-Position

-.4

D-2%



T R S S W |

draabeedd

H ' v
i . . .
LIS I RPN 1 T I L A I I

IR BB B

-.1
-.2

(staxtd) aoynfl x

1
- )
AU VRN WO SO (OIS VO R T

10

Noal

PC#6

r

Nonlinea

Filter #10,

ER

(a) X JITT

{stex1d) aajl x

- Filter #10,Monlinear, PC#6

STATISTICS

(b) X JITTER

. Sirnulation #10, General Angle, X-Atmospheric Jitter

Figure D.238 Pogo Condition #6

D-29




o
m R R Ii
] 3
...m.....- . N L ~S
m P g3
: ’ %” p...nw
lo = |- o S
. n, $%
4 H em
- - “ n
DR I\ } I = m
b o ; -MA.A
] o S %
_ —_ Nm“.v
1% g S
B o lm
] eZ& L3
le £8 |- U o 2
e E2 £3&
1 * umo.
1 o T p 2
] 3 | § 2
R et E 3
1w ™= | 83
] i K
-3 TS
— s >
] m ﬂ%
> = 8
& = 2
= "%
- [ = 2
] 2
. = = o
)
-o} .Jm
) > A
(]
)m
o B
~—rr

(stextd) aoyyif £
) £ {stoxid} a1l £




pogo (pixels)

..........................................................................................

' . . 1 1 i '
i ‘ . . : H i . '
__6 TS N N [N S VYT S IS TN T S VAU S YOO, W WO WS OO O} VIS IS O RO I S ST TS N VO TR S IO VN A0 OO0 OO OO0 O dobod

0 1 2 3 4 S 6 7 8 9 10
time
(e) POGO OFFSET - Filter #10,Nonlinear, PC#8
.8

pogo (pixels)
o

' : | ' . ' . . i
_8r—‘njlx.n_LL.JLL:J.LLLLAJAJan,AL.._L‘LAJJ,I e b arbndae Lt
-

0 1 2 3 4 5 8 7 8 9 10
time
(h) POGO OFFSET STATISTICS - Filter #!10,Nonlinear, PC#86
Figure D.30 Pogo Condition #6, Simulation #10, General Angle, Pogo Offset

D-31




/3

This appenc ix contains the average state and error statistics plots of the nine-state AFIT
clemental filter. The data depicted in the two types of plots in this appendix ate éxplained in
Appendices A and B. The state comparison plots show the ensemble average truth state over the
5 Monte Carlo runs compared to the same statistic for the filter estimate. The error statistics plots
represent the error mean and mean 1 standard deviation values in pixels (or pixels/second for

velocity and nogo velocity), of the errors between the filter esttniated and true state.
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